proposed
approved
proposed
approved
editing
proposed
A343497[n_]:= DivisorSum[n, #^3*EulerPhi[n/#] &]; Table[A343497[n], {n, 50}] (* G. C. Greubel, Jun 24 2024 *)
(Magma)
A343497:= func< n | (&+[d^3*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A343497(n): n in [1..50]]; // G. C. Greubel, Jun 24 2024
(SageMath)
def A343497(n): return sum(k^3*euler_phi(n/k) for k in (1..n) if (k).divides(n))
[A343497(n) for n in range(1, 51)] # G. C. Greubel, Jun 24 2024
approved
editing
Peter Bala, <a href="/A368743/a368743.pdf">GCD sum theorems. Two Multivariable Cesaro Type Identities</a>.
editing
approved
Peter Bala, <a href="/A368743/a368743.pdf">GCD sum theorems. Two Multivariable Cesaro Type Identities</a>.
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
with(numtheory):
seq(add(phi(n/d) * d^3, d in divisors(n)), n = 1..50); # Peter Bala, Jan 20 2024
a(n) = Sum_{1 <= i, j, k <= n} gcd(i, j, k, n) = Sum_{d divides n} d * J_3(n/d), where the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 20 2024
nonn,mult,easy
approved
editing