[go: up one dir, main page]

login
Revision History for A339516 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n+1) = (a(n) - 2*(n-1)) * (2*n-1), where a(1)=1.
(history; published version)
#36 by Harvey P. Dale at Sun Aug 25 13:19:33 EDT 2024
STATUS

editing

approved

#35 by Harvey P. Dale at Sun Aug 25 13:19:30 EDT 2024
MATHEMATICA

nxt[{n_, a_}]:={n+1, (a-2n)(2n+1)}; Join[{1}, NestList[nxt, {1, 1}, 20][[;; , 2]]] (* Harvey P. Dale, Aug 25 2024 *)

STATUS

approved

editing

#34 by Peter Luschny at Fri Sep 02 06:08:38 EDT 2022
STATUS

reviewed

approved

#33 by Joerg Arndt at Fri Sep 02 05:27:22 EDT 2022
STATUS

proposed

reviewed

#32 by Georg Fischer at Thu Sep 01 09:02:19 EDT 2022
STATUS

editing

proposed

#31 by Georg Fischer at Thu Sep 01 09:02:13 EDT 2022
FORMULA

Homogeneous recurrence: (-2*n+9)*a(n-4) + (6*n-20)*a(n-3) + (-6*n+12)*a(n-2) + 2*n*a(n-1) - a(n) = 0 with a(1)=a(2)=1, a(3)=-3, a(4)=-35. - Georg Fischer, Sep 01 2022

STATUS

approved

editing

#30 by R. J. Mathar at Wed Aug 24 04:26:21 EDT 2022
STATUS

editing

approved

#29 by R. J. Mathar at Wed Aug 24 04:26:18 EDT 2022
FORMULA

a(n) -2*n*a(n-1) +(2*n-3)*a(n-2) +2*(4*n-5)=0. - R. J. Mathar, Aug 19 2022

MAPLE

A339516 := proc(n)

option remember ;

if n = 1 then

1;

else

(2*n-3)*(procname(n-1)-2*(n-2)) ;

end if;

end proc:

seq(A339516(n), n=1..30) ; # R. J. Mathar, Aug 24 2022

STATUS

approved

editing

#28 by R. J. Mathar at Fri Aug 19 05:21:06 EDT 2022
STATUS

editing

approved

#27 by R. J. Mathar at Fri Aug 19 05:21:03 EDT 2022
FORMULA

a(n) -2*n*a(n-1) +(2*n-3)*a(n-2) +2*(4*n-5)=0. - R. J. Mathar, Aug 19 2022

STATUS

approved

editing