proposed
approved
proposed
approved
editing
proposed
~See A335947 for formulas and references concerning the polynomials.
T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
denom(coeffT(smuBpoln, k) = denominator([x^k] b_n,(x), ), where b_n(x, ) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k).
First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Triangle starts:
1, 1;
12, 1, 1;
1, 4, 1, 1;
240, 1, 2, 1, 1;
1, 48, 1, 6, 1, 1;
1344, 1, 16, 1, 4, 1, 1;
1, 192, 1, 48, 1, 4, 1, 1;
3840, 1, 48, 1, 24, 1, 3, 1, 1;
1, 1280, 1, 16, 1, 40, 1, 1, 1, 1;
33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;
allocated for Peter Luschny
denom(coeff(smuBpol(n,x), x, k))
1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1
0,4
1;
1, 1;
12, 1, 1;
1, 4, 1, 1;
240, 1, 2, 1, 1;
1, 48, 1, 6, 1, 1;
1344, 1, 16, 1, 4, 1, 1;
1, 192, 1, 48, 1, 4, 1, 1;
3840, 1, 48, 1, 24, 1, 3, 1, 1;
1, 1280, 1, 16, 1, 40, 1, 1, 1, 1;
33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;
Cf. A335948 (numerators),
allocated
nonn,frac,tabl
Peter Luschny, Jul 01 2020
approved
editing
allocated for Peter Luschny
allocated
approved