proposed
approved
proposed
approved
editing
proposed
Solution of the complementary equation a(n) = a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n) ) and (b(n) ) are increasing complementary sequences of positive integers such that every positive integer is in one of them and only one term is in both.
a(0) = 1, a(1) = 2, b(0) = 3, so that a(2) = 4
b(1) = 4 (least "new number")
a(2) = a(0) + b(0) = 4
Complement: (b(n)) = (3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, ...)
Edited by Clark Kimberling, Dec 02 2017
approved
editing
proposed
approved
editing
proposed
allocated for Clark KimberlingSolution of the complementary equation a(n) = a(n-2) + b(n-2), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
1, 2, 4, 6, 9, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88, 98, 110, 122, 135, 148, 162, 177, 192, 208, 224, 241, 258, 277, 295, 315, 334, 355, 375, 398, 419, 443, 465, 490, 513, 539, 564, 591, 617, 645, 672, 701, 729, 760, 789, 821, 851, 884, 915, 949, 981
0,2
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values sequences in the following guide are a(0) = 1, a(1) = 2, b(0) = 3.
A294860: a(n) = a(n-2) + b(n-2)
A294861: a(n) = a(n-2) + b(n-2) + 1
A294862: a(n) = a(n-2) + b(n-2) + 2
A294863: a(n) = a(n-2) + b(n-2) + 3
A294864: a(n) = a(n-2) + b(n-2) + n
A294865: a(n) = a(n-2) + 2*b(n-2)
A294866: a(n) = 2*a(n-1) - a(n-2) + b(n-1)
A294867: a(n) = 2*a(n-1) - a(n-2) + b(n-1) - 1
A294868: a(n) = 2*a(n-1) - a(n-2) + b(n-1) - 2
A294869: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 1
A294870: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 2
A294871: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + 3
A294872: a(n) = 2*a(n-1) - a(n-2) + b(n-1) + n
A022942: a(n) = a(n-2) + b(n-1); with offset 1
Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.html">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13.
a(0) = 1, a(1) = 2, b(0) = 3, so that
b(1) = 4 (least "new number")
a(2) = a(0) + b(0) = 4
Complement: (b(n)) = (3, 4, 5, 7, 8, 10, 11, 12, 14, 15, 16, ...)
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A294860 *)
Table[b[n], {n, 0, 10}]
allocated
nonn,easy
Clark Kimberling, Nov 16 2017
approved
editing
allocating
allocated
allocated for Clark Kimberling
allocating
approved