OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. a(n)/a(n-1) -> 1.298123759410105...
See A295860 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..999
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
FORMULA
a(0) = 1, a(1) = 2, b(0) = 3, so that a(2) = 5, b(1) = 4.
Complement: (b(n)) = (3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, ...)
MATHEMATICA
mex[t_] := NestWhile[# + 1 &, 1, MemberQ[t, #] &];
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = 2 a[n - 2] + b[n - 2]; (* A295998 *)
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 100}];
Table[b[n], {n, 0, 30}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 02 2017
STATUS
approved