M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.htmltxt
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A263528/b263528.txt">Table of n, a(n) for n = 0..2500</a>
approved
editing
editing
approved
allocated for Michael SomosExpansion of (psi(x) * psi(x^3) / f(-x^3)^2)^2 in powers of x where psi(), f() are Ramanujan theta functions.
1, 2, 1, 8, 14, 6, 38, 60, 23, 140, 208, 76, 439, 626, 221, 1232, 1704, 584, 3182, 4300, 1443, 7700, 10212, 3368, 17673, 23076, 7497, 38808, 50008, 16046, 82070, 104560, 33190, 167996, 211920, 66628, 334202, 417902, 130288, 648224, 804254, 248858, 1229148
0,2
M. Somos, <a href="http://somos.crg4.com/multiq.html">Introduction to Ramanujan theta functions</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
Expansion of q^(-1/2) * (eta(q^2)^2 * eta(q^6)^2 / (eta(q) * eta(q^3)^3))^2 in powers of q.
Euler transform of period 6 sequence [ 2, -2, 8, -2, 2, 0, ...].
-2 * a(n) = A262930(2*n + 1).
G.f. = 1 + 2*x + x^2 + 8*x^3 + 14*x^4 + 6*x^5 + 38*x^6 + 60*x^7 + 23*x^8 + ...
G.f. = q + 2*q^3 + q^5 + 8*q^7 + 14*q^9 + 6*q^11 + 38*q^13 + 60*q^15 + 23*x^17 + ...
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)] / (4 QPochhammer[ x^3]^2))^2 / x, {x, 0, n}];
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A)^3))^2, n))};
Cf. A262930.
allocated
nonn
Michael Somos, Oct 19 2015
approved
editing
allocated for Michael Somos
allocated
approved