[go: up one dir, main page]

login
Revision History for A263528 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of (psi(x) * psi(x^3) / f(-x^3)^2)^2 in powers of x where psi(), f() are Ramanujan theta functions.
(history; published version)
#9 by Charles R Greathouse IV at Fri Mar 12 22:24:48 EST 2021
LINKS

M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

Discussion
Fri Mar 12
22:24
OEIS Server: https://oeis.org/edit/global/2897
#8 by N. J. A. Sloane at Wed Nov 13 21:58:51 EST 2019
LINKS

M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.htmltxt">Introduction to Ramanujan theta functions</a>

Discussion
Wed Nov 13
21:58
OEIS Server: https://oeis.org/edit/global/2832
#7 by Alois P. Heinz at Tue Jul 31 21:16:54 EDT 2018
STATUS

reviewed

approved

#6 by Michel Marcus at Tue Jul 31 13:36:37 EDT 2018
STATUS

proposed

reviewed

#5 by G. C. Greubel at Tue Jul 31 13:22:40 EDT 2018
STATUS

editing

proposed

#4 by G. C. Greubel at Tue Jul 31 13:22:33 EDT 2018
LINKS

G. C. Greubel, <a href="/A263528/b263528.txt">Table of n, a(n) for n = 0..2500</a>

STATUS

approved

editing

#3 by Michael Somos at Mon Oct 19 22:50:13 EDT 2015
STATUS

editing

approved

#2 by Michael Somos at Mon Oct 19 22:50:06 EDT 2015
NAME

allocated for Michael SomosExpansion of (psi(x) * psi(x^3) / f(-x^3)^2)^2 in powers of x where psi(), f() are Ramanujan theta functions.

DATA

1, 2, 1, 8, 14, 6, 38, 60, 23, 140, 208, 76, 439, 626, 221, 1232, 1704, 584, 3182, 4300, 1443, 7700, 10212, 3368, 17673, 23076, 7497, 38808, 50008, 16046, 82070, 104560, 33190, 167996, 211920, 66628, 334202, 417902, 130288, 648224, 804254, 248858, 1229148

OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

M. Somos, <a href="http://somos.crg4.com/multiq.html">Introduction to Ramanujan theta functions</a>

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

FORMULA

Expansion of q^(-1/2) * (eta(q^2)^2 * eta(q^6)^2 / (eta(q) * eta(q^3)^3))^2 in powers of q.

Euler transform of period 6 sequence [ 2, -2, 8, -2, 2, 0, ...].

-2 * a(n) = A262930(2*n + 1).

EXAMPLE

G.f. = 1 + 2*x + x^2 + 8*x^3 + 14*x^4 + 6*x^5 + 38*x^6 + 60*x^7 + 23*x^8 + ...

G.f. = q + 2*q^3 + q^5 + 8*q^7 + 14*q^9 + 6*q^11 + 38*q^13 + 60*q^15 + 23*x^17 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)] / (4 QPochhammer[ x^3]^2))^2 / x, {x, 0, n}];

PROG

(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A)^3))^2, n))};

CROSSREFS

Cf. A262930.

KEYWORD

allocated

nonn

AUTHOR

Michael Somos, Oct 19 2015

STATUS

approved

editing

#1 by Michael Somos at Mon Oct 19 22:50:06 EDT 2015
NAME

allocated for Michael Somos

KEYWORD

allocated

STATUS

approved