proposed
approved
proposed
approved
editing
proposed
Table[(2 n + 1)! Sum[BernoulliB[2 k], {k, 0, n}], {n, 0, 14}] (* Michael De Vlieger, Sep 21 2015 *)
proposed
editing
editing
proposed
allocated for Peter Luschnya(n) = (2*n+1)!*Sum_{k=0..n} B(2*k), B(n) the n-th Bernoulli number.
1, 7, 136, 5832, 407808, 47882880, 5893585920, 2763273139200, -1770980740300800, 6081299047511654400, -24479310471391641600000, 147692341217380307927040000, -1254349086918655739874508800000, 14641717268146696857494972006400000, -229475387530005564381034470860390400000
0,2
It appears that for n > 6, a(n)*(-1)^n < 0. (This comment was inspired by an observation of Robert Israel in A061053.)
a := n -> (2*n+1)!*add(bernoulli(2*k), k=0..n): seq(a(n), n=0..30);
Cf. A061053.
allocated
sign
Peter Luschny, Sep 21 2015
approved
editing
allocated for Peter Luschny
allocated
approved