proposed
approved
proposed
approved
editing
proposed
R. M. Bradley, <a href="https://hal.archives-ouvertes.fr/jpa-00210189/">Statistical mechanics of the travelling salesman on the Sierpinski gasket</a>, J. Physique, 47 (1986), 9-14. doi:<a href="http://dx.doi.org/10.1051/jphys:019860047010900">10.1051/jphys:019860047010900
S.-C. Chang, L.-C. Chen. Hamiltonian walks on the Sierpinski gasket, J. Math. Phys. 52 (2011), 023301. doi:<a href="http://dx.doi.org/10.1063/1.3545358">10.1063/1.3545358</a>. arXiv:<a href="http://arxiv.org/abs/0909.5541">0909.5541</a>.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianCycle.html">Hamiltonian Cycle</a>.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiGasketGraph.html">Sierpiński Gasket Graph</a>.
For n >= 3, a(n) = 8 * 12^((3^(n-2)-3)/2).
For n >= 4, a(n) = (3*a(n-1))^3.
approved
editing
proposed
approved
editing
proposed
Numbers of (undirected) Hamiltonian cycles in the n-Sierpiński sieve gasket graph.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SierpinskiSieveGraphSierpinskiGasketGraphSieve Gasket Graph</a>
approved
editing
(MAGMAMagma) [1, 1] cat [Floor(8 * 12^((3^(n-2)-3)/2)): n in [3..10]]; // Vincenzo Librandi, Jun 15 2015
proposed
approved
editing
proposed
R. M. Bradley, <a href="httphttps://hal.archives-ouvertes.fr/docs/00/21/01/89/PDF/ajpjpa-jphys_1986_47_1_9_0.pdf00210189/">Statistical mechanics of the travelling salesman on the Sierpinski gasket</a>, J. Physique, 47 (1986), 9-14. doi:<a href="http://dx.doi.org/10.1051/jphys:019860047010900">10.1051/jphys:019860047010900
proposed
editing