_M. F. Hasler (www.univ-ag.fr/~mhasler), _, Jan 27 2009
_M. F. Hasler (www.univ-ag.fr/~mhasler), _, Jan 27 2009
a(n) > 10^9 for n >= 47. [From _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Sep 29 2009]
a(23)-a(46) and b-file from _Donovan Johnson (donovan.johnson(AT)yahoo.com), _, Sep 29 2009
Donovan Johnson, <a href="/A155715/b155715.txt">Table of n, a(n) for n=1..46</a>
nonn,new
nonn
nonn,new
nonn
M. F. Hasler (MHasler(AT)www.univ-ag.fr/~mhasler), Jan 27 2009
2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924, 1399696, 1399696, 1399696, 3027249, 3027249, 3027249, 4349601, 4349601, 18567396, 18567396, 18567396
a(n) > 10^9 for n >= 47. [From Donovan Johnson (donovan.johnson(AT)yahoo.com), Sep 29 2009]
Donovan Johnson, <a href="b155715.txt">Table of n, a(n) for n=1..46</a>
more,nonn,new
nonn
a(23)-a(46) and b-file from Donovan Johnson (donovan.johnson(AT)yahoo.com), Sep 29 2009
Least number expressible as a^2 + k b^2 with positive integers a,b, for each k=1,...,n.
2, 17, 73, 73, 241, 241, 1009, 1009, 1009, 1009, 7561, 7561, 21961, 32356, 32356, 32356, 44641, 44641, 349924, 349924, 349924, 349924
1,1
a(1) = 2 = 1^2 + 1^2 is the least number of the sequence A000404 (sum of positive squares). a(2) = 17 = 1^2 + 4^2 = 3^2 + 2*2^2 is the least number in sequence A000404 to be in sequence A154777 (a^2+2b^2)as well. a(3) = 73 = 3^2 + 8^2 = 1^2 + 2*6^2 = 5^2 + 3*4^2 is the least number in the intersection of sequences A000404, A154777 and A092572 (a^2+3b^2).
(PARI) k=1; for( n=1, 10^9, forstep( c=k, 1, -1, for( b=1, sqrtint((n-1)\c), issquare(n-c*b^2) & next(2)); next(2)); print1(n", "); k++; n--)
more,nonn
M. F. Hasler (MHasler(AT)univ-ag.fr), Jan 27 2009
approved