[go: up one dir, main page]

login
A155578
Intersection of A000404 and A155717: N = a^2 + b^2 = c^2 + 7*d^2 for some positive integers a,b,c,d.
14
8, 29, 32, 37, 53, 72, 109, 113, 116, 128, 137, 148, 149, 193, 197, 200, 212, 232, 233, 261, 277, 281, 288, 296, 317, 333, 337, 373, 389, 392, 400, 401, 421, 424, 436, 449, 452, 457, 464, 477, 512, 541, 548, 557, 569, 592, 596, 613, 617, 641, 648, 653, 673
OFFSET
1,1
COMMENTS
Subsequence of A155568 (where a,b,c,d may be zero).
PROG
(PARI) isA155578(n, /* optional 2nd arg allows us to get other sequences */c=[7, 1]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 999, isA155578(n) & print1(n", "))
(Python)
from math import isqrt
def aupto(limit):
cands = range(1, isqrt(limit)+1)
left = set(a**2 + b**2 for a in cands for b in cands)
right = set(c**2 + 7*d**2 for c in cands for d in cands)
return sorted(k for k in left & right if k <= limit)
print(aupto(673)) # Michael S. Branicky, Aug 29 2021
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved