(MAGMAMagma) [ <n, p>: n in [1..8047] | t where t, p:=IsSquare(Factorial(n)+1) ]; // Klaus Brockhaus, Nov 05 2008
(MAGMAMagma) [ <n, p>: n in [1..8047] | t where t, p:=IsSquare(Factorial(n)+1) ]; // Klaus Brockhaus, Nov 05 2008
proposed
approved
editing
proposed
Apoloniusz Tyszka, <a href="https://philarchive.org/rec/TYSDAS">On sets X subset of N for which we know an algorithm that computes a threshold number t(X) \in N such that X is infinite if and only if X contains an element greater than t(X)</a>, 2019.
proposed
editing
editing
proposed
Apoloniusz Tyszka, <a href="https://philarchive.org/rec/TYSDAS">On sets X \subseteq \mathbb{subset of N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)</a>, 2019.
Eric Weisstein, Eric W. 's World of Mathematics, <a href="http://mathworld.wolfram.com/BrocardsProblem.html">Brocard's Problem</a>.
Berndt, B. C. and Galway, W. F. <a href="http://www.math.uiuc.edu/~berndt/articles/galway.pdf">On the Brocard-Ramanujan Diophantine Equation n!+1=m^2</a>, The Ramanujan Journal, March 2000, Volume 4, Issue 1, pp 41-42. H% Apoloniusz Tyszka, <a href="https://philarchive.org/rec/TYSDAS">On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X).</a> 2019.
Apoloniusz Tyszka, <a href="https://philarchive.org/rec/TYSDAS">On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X)</a>, 2019.
proposed
editing
editing
proposed
Berndt, B. C. and Galway, W. F. <a href="http://www.math.uiuc.edu/~berndt/articles/galway.pdf">On the Brocard-Ramanujan Diophantine Equation n!+1=m^2</a>, The Ramanujan Journal, March 2000, Volume 4, Issue 1, pp 41-42. H% Apoloniusz Tyszka, <a href="https://philarchive.org/rec/TYSDAS">On sets X \subseteq \mathbb{N} for which we know an algorithm that computes a threshold number t(X) \in \mathbb{N} such that X is infinite if and only if X contains an element greater than t(X).</a> 2019.
proposed
editing