proposed
approved
proposed
approved
editing
proposed
(* Alternative: *) Needs["Combinatorica`"]
Flatten[Table[k*Eulerian[n+1, k], {n, 1, 9}, {k, 1, n}]] (* Peter Luschny, Feb 07 2023 *)
Let E(n, x) = Sum_{j=0..k+1}} (-1)^j binomialA173018(n + 1, j)*(, k + 1 - j)*x^n k and E'(n, x) = (d/dx) E(x, n). Then T(n, k) = [x^(k-1)] E'(n+1, x).
T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; Table[CoefficientList[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; Flatten[%]
T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];
Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}];
Table[CoefficientList[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}];
Flatten[%]
Let E(n, x) = Sum_{j=0..k+1}} (-1)^j binomial(n + 1, j)*(k + 1 - j)^n and E'(n, x) = (d/dx) E(x, n). Then T(n, k) = [x^(k-1)] E'(n, +1, x).
Triangel Triangle T(n, k) starts:
Row sums are: A001286 ( Lah numbers: (n-1)*n!/2. );
{0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600}.
pLet E(x,n, x) = Sum[_{j=0..k+1}} (-1)^j Binomial[binomial(n + 1, j])*(k + 1 - j)^n, {j, 0, k + 1}]; p and E'(x,n, x) = (d/dx)p{ E(x, n); t. Then T(n,m k) =Coefficients(p'( [x,^k] E'(n), x).
{1},
Triangel T(n, k) starts:
{ 1};
{ 4, 2},;
{ 11, 22, 3},;
{ 26, 132, 78, 4},;
{ 57, 604, 906, 228, 5},;
{ 120, 2382, 7248, 4764, 600, 6},;
{ 247, 8586, 46857, 62476, 21465, 1482, 7},;
{ 502, 29216, 264702, 624760, 441170, 87648, 3514, 8},;
{1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}.
T := (n, k) -> k * combinat:-eulerian1(n+1, k):
for n from 1 to 9 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Feb 07 2023
tT[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; Table[D[Sum[tT[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; Table[CoefficientList[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; Flatten[%]
nonn,tabl,uned
Edited by Peter Luschny, Feb 07 2023
approved
editing
editing
approved
nonn,tabl,uned
approved
editing
_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 24 2008
Coefficients of derivatives of Eulerian number polynomials (A008292): p(x,n)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; p'(x,n)=(d/dx)p{x,n).
1, 4, 2, 11, 22, 3, 26, 132, 78, 4, 57, 604, 906, 228, 5, 120, 2382, 7248, 4764, 600, 6, 247, 8586, 46857, 62476, 21465, 1482, 7, 502, 29216, 264702, 624760, 441170, 87648, 3514, 8, 1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9
1,2
Row sums are: A001286 ( Lah numbers: (n-1)*n!/2. );
{0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600}.
p(x,n)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; p'(x,n)=(d/dx)p{x,n); t(n,m)=Coefficients(p'(x,n)).
{1},
{4, 2},
{11, 22, 3},
{26, 132, 78, 4},
{57, 604, 906, 228, 5},
{120, 2382, 7248, 4764, 600, 6},
{247, 8586, 46857, 62476, 21465, 1482, 7},
{502, 29216, 264702, 624760, 441170, 87648, 3514, 8},
{1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}
t[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; Table[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; Table[CoefficientList[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; Flatten[%]
nonn,uned
Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Sep 24 2008
approved