[go: up one dir, main page]

login
Revision History for A142706 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Coefficients of the derivatives of the Eulerian polynomials (with indexing as in A173018).
(history; published version)
#10 by Michael De Vlieger at Tue Feb 07 12:43:13 EST 2023
STATUS

proposed

approved

#9 by Peter Luschny at Tue Feb 07 07:20:31 EST 2023
STATUS

editing

proposed

#8 by Peter Luschny at Tue Feb 07 07:19:23 EST 2023
MATHEMATICA

(* Alternative: *) Needs["Combinatorica`"]

Flatten[Table[k*Eulerian[n+1, k], {n, 1, 9}, {k, 1, n}]] (* Peter Luschny, Feb 07 2023 *)

#7 by Peter Luschny at Tue Feb 07 06:31:05 EST 2023
FORMULA

Let E(n, x) = Sum_{j=0..k+1}} (-1)^j binomialA173018(n + 1, j)*(, k + 1 - j)*x^n k and E'(n, x) = (d/dx) E(x, n). Then T(n, k) = [x^(k-1)] E'(n+1, x).

MATHEMATICA

T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; Table[CoefficientList[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; Flatten[%]

T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];

Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}];

Table[CoefficientList[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}];

Flatten[%]

#6 by Peter Luschny at Tue Feb 07 06:21:51 EST 2023
NAME

Coefficients of the derivatives of the Eulerian polynomials (with indexing as in A008292A173018).

FORMULA

Let E(n, x) = Sum_{j=0..k+1}} (-1)^j binomial(n + 1, j)*(k + 1 - j)^n and E'(n, x) = (d/dx) E(x, n). Then T(n, k) = [x^(k-1)] E'(n, +1, x).

EXAMPLE

Triangel Triangle T(n, k) starts:

CROSSREFS

Cf. A008292, A173018, A001286 (row sums).

#5 by Peter Luschny at Tue Feb 07 06:06:20 EST 2023
NAME

Coefficients of derivatives of Eulerian number polynomials (A008292): p(x,n)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; p'(x,n)=(d/dx)p{x,n).

Coefficients of the derivatives of the Eulerian polynomials (with indexing as in A008292).

COMMENTS

Row sums are: A001286 ( Lah numbers: (n-1)*n!/2. );

{0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600}.

FORMULA

pLet E(x,n, x) = Sum[_{j=0..k+1}} (-1)^j Binomial[binomial(n + 1, j])*(k + 1 - j)^n, {j, 0, k + 1}]; p and E'(x,n, x) = (d/dx)p{ E(x, n); t. Then T(n,m k) =Coefficients(p'( [x,^k] E'(n), x).

EXAMPLE

{1},

Triangel T(n, k) starts:

{ 1};

{ 4, 2},;

{ 11, 22, 3},;

{ 26, 132, 78, 4},;

{ 57, 604, 906, 228, 5},;

{ 120, 2382, 7248, 4764, 600, 6},;

{ 247, 8586, 46857, 62476, 21465, 1482, 7},;

{ 502, 29216, 264702, 624760, 441170, 87648, 3514, 8},;

{1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}.

MAPLE

T := (n, k) -> k * combinat:-eulerian1(n+1, k):

for n from 1 to 9 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Feb 07 2023

MATHEMATICA

tT[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; Table[D[Sum[tT[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; Table[CoefficientList[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; Flatten[%]

CROSSREFS

Cf. A008292, A001286 (row sums).

KEYWORD

nonn,tabl,uned

EXTENSIONS

Edited by Peter Luschny, Feb 07 2023

STATUS

approved

editing

#4 by Alois P. Heinz at Wed Aug 25 13:32:06 EDT 2021
STATUS

editing

approved

#3 by Alois P. Heinz at Wed Aug 25 13:31:46 EDT 2021
KEYWORD

nonn,tabl,uned

STATUS

approved

editing

Discussion
Wed Aug 25
13:31
Alois P. Heinz: seems to be a tabl ...
#2 by Charles R Greathouse IV at Fri Oct 12 14:54:52 EDT 2012
AUTHOR

_Roger L. Bagula _ and _Gary W. Adamson (rlbagulatftn(AT)yahoo.com), _, Sep 24 2008

Discussion
Fri Oct 12
14:54
OEIS Server: https://oeis.org/edit/global/1840
#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Coefficients of derivatives of Eulerian number polynomials (A008292): p(x,n)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; p'(x,n)=(d/dx)p{x,n).

DATA

1, 4, 2, 11, 22, 3, 26, 132, 78, 4, 57, 604, 906, 228, 5, 120, 2382, 7248, 4764, 600, 6, 247, 8586, 46857, 62476, 21465, 1482, 7, 502, 29216, 264702, 624760, 441170, 87648, 3514, 8, 1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9

OFFSET

1,2

COMMENTS

Row sums are: A001286 ( Lah numbers: (n-1)*n!/2. );

{0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600}.

FORMULA

p(x,n)=Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; p'(x,n)=(d/dx)p{x,n); t(n,m)=Coefficients(p'(x,n)).

EXAMPLE

{1},

{4, 2},

{11, 22, 3},

{26, 132, 78, 4},

{57, 604, 906, 228, 5},

{120, 2382, 7248, 4764, 600, 6},

{247, 8586, 46857, 62476, 21465, 1482, 7},

{502, 29216, 264702, 624760, 441170, 87648, 3514, 8},

{1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}

MATHEMATICA

t[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; Table[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; Table[CoefficientList[D[Sum[t[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; Flatten[%]

CROSSREFS
KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula and Gary W. Adamson (rlbagulatftn(AT)yahoo.com), Sep 24 2008

STATUS

approved