editing
approved
editing
approved
Equals ConvOffsStoT transform of the 2^n series: (1, 2, 4, 8, ...); e.g., ConvOffs transform of (1, 2, 4, 8) = (1, 8, 16, 8, 1). - Gary W. Adamson, Apr 21 2008
(MAGMAMagma)
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Triangle, T(n,k) = 2^(k*(n-k)), read by rows, defined by: T(n,k) = 2^((n-k)*k) for n>=k>=0.
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1, 1, 512, 65536
G. C. Greubel, <a href="/A117401/b117401.txt">Rows n = 0..50 of the triangle, flattened</a>
T(n,k) = (1/n)*[( 2^(n-k)*k*T(n-1,k-1) + 2^k*(n-k)*T(n-1,k)], ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
T(n, k, m) = (m+2)^(k*(n-k)) with m = 0. - G. C. Greubel, Jun 28 2021
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 8, 16, 8, 1;
1, 16, 64, 64, 16, 1;
1, 32, 256, 512, 256, 32, 1;
1, 64, 1024, 4096, 4096, 1024, 64, 1;
1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1;
1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1; ...
(MAGMA)
A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
[A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
(Sage)
def A117401(n, k, m): return (m+2)^(k*(n-k))
flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Let E(x) = Sum_{n>=0 } x^n/2^C(n,2). Then E(x)*E(y*x) = Sum_{n>=0 } Sum_{k=0..n} T(n,k)*y^k*x^n/2^C(n,2). - Geoffrey Critzer, May 31 2020
proposed
editing