[go: up one dir, main page]

login
Revision History for A103236 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangular matrix T, read by rows, that satisfies: T^2 + 2*T = SHIFTUP(T), also T^(n+1) + 2*T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
(history; published version)
#11 by Michel Marcus at Sun May 11 08:30:15 EDT 2014
STATUS

reviewed

approved

#10 by Peter Luschny at Sun May 11 07:18:47 EDT 2014
STATUS

proposed

reviewed

#9 by Jon E. Schoenfield at Sun May 11 05:18:25 EDT 2014
STATUS

editing

proposed

#8 by Michel Marcus at Sun May 11 05:04:55 EDT 2014
EXAMPLE

G.f. for column 0: 1 = (1-3x) + 3*x/(1-2x)*(1-3x)(1-4x) + 15*x^2/(1-2x)^2*(1-3x)(1-4x)(1-5x) + 114*x^3/(1-2x)^3*(1-3x)(1-4x)(1-5x)(1-6x) + ... + T(n,0)*x^n/(1-2*x)^n*(1-3x)(1-4x)*..*(1-(n+3)x) + ...

15G.f. for column 1: 2 = 2*(1-4x) + 8*x/(1-2x)*(1-4x)(1-5x) + 56*x^2/(1-2x)^2*(1-3x4x)(1-5x)(1-6x) + 568*x^3/(1-2x)^3*(1-4x)(1-5x)(1-6x)(1-7x) + ... + T(n,1)*x^(n-1)/(1-2*x)^(n-1)*(1-4x)(1-5x) *..*(1-(n+3)x) + ...

114*x^3/(1-2x)^3*(1-3x)(1-4x)(1-5x)(1-6x) + ...

+ T(n,0)*x^n/(1-2*x)^n*(1-3x)(1-4x)*..*(1-(n+3)x) + ...

G.f. for column 1: 2 = 2*(1-4x) + 8*x/(1-2x)*(1-4x)(1-5x) +

56*x^2/(1-2x)^2*(1-4x)(1-5x)(1-6x) +

568*x^3/(1-2x)^3*(1-4x)(1-5x)(1-6x)(1-7x) + ...

+ T(n,1)*x^(n-1)/(1-2*x)^(n-1)*(1-4x)(1-5x)*..*(1-(n+3)x) + ...

STATUS

proposed

editing

Discussion
Sun May 11
05:05
Michel Marcus: removed breaks, ok Jon ?
05:18
Jon E. Schoenfield: Okay, thanks!
#7 by Jon E. Schoenfield at Sun May 11 04:31:32 EDT 2014
STATUS

editing

proposed

#6 by Jon E. Schoenfield at Sun May 11 04:31:30 EDT 2014
COMMENTS

Left-most Leftmost column is A082163 (enumerates acyclic automata with 2 inputs). The operation SHIFTUP(T) shifts each column of T up 1 row, dropping the elements that occupied the diagonal of T.

STATUS

approved

editing

#5 by Russ Cox at Fri Mar 30 18:36:44 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 31 2005

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#4 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
FORMULA

G.f. for column k: T(k, k) = k+1 = Sum_{n>=k} T(n, k)*x^(n-k)/(1-2*x)^(n-k) * Product_{j=0..n-k} (1-(j+k+3)*x). Diagonalization: T = P*D*P^-1 where P(r, c) = A103247(r, c)/(r-c)! = (-1)^(r-c)*(c^2+2*c)^(r-c)/(r-c)! for r>=c>=1, and [P^-1](r, c) = A103242(r, c)/(r-c)!, and D is a diagonal matrix = {1, 2, 3, ...}.

KEYWORD

nonn,tabl,new

#3 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,tabl,new

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Jan 31 2005

#2 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

G.f. for column k: T(k, k) = k+1 = Sum_{n>=k} T(n, k)*x^(n-k)/(1-2*x)^(n-k) * Product_{j=0..n-k} (1-(j+k+3)*x). Diagonalization: T = P*D*P^-1 where P(r, c) = A103247(r, c)/(r-c)! = (-1)^(r-c)*(c^2+2*c)^(r-c)/(r-c)! for r>=c>=1, and [P^-1](r, c) = A103242(r, c)/(r-c)!, and D is a diagonal matrix = {1, 2, 3, ...}.

KEYWORD

nonn,tabl,new