[go: up one dir, main page]

login
Revision History for A099579 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * 3^(k-1).
(history; published version)
#10 by Peter Luschny at Mon Jul 25 01:13:37 EDT 2022
STATUS

reviewed

approved

#9 by Michel Marcus at Mon Jul 25 01:12:12 EDT 2022
STATUS

proposed

reviewed

#8 by G. C. Greubel at Sun Jul 24 14:31:52 EDT 2022
STATUS

editing

proposed

#7 by G. C. Greubel at Sun Jul 24 14:29:45 EDT 2022
NAME

a(n) = Sum C(n-k,k-1)3^(k-1), _{k=0..floor(n/2)} binomial(n-k, k-1) * 3^(k-1).

COMMENTS

In general a(n) =sum Sum_{k=0..floor(n/2), C} binomial(n-k, k-1)*r^(k-1)} has g.f. x^2/((1-r*x^2)*(1-x-r*x^2)) and satisfies the recurrence a(n) = a(n-1) +2r 2*r*a(n-2) - r*a(n-3) - r^2*a(n-4).

LINKS

G. C. Greubel, <a href="/A099579/b099579.txt">Table of n, a(n) for n = 0..1000</a>

FORMULA

G.f.: x^2/((1-3x3*x^2)*(1-x-3x3*x^2)); a(n)=a(n-1)+6a(n-2)-3a(n-3)-9a(n-4).

a(n) = a(n-1) + 6*a(n-2) - 3*a(n-3) - 9*a(n-4).

From G. C. Greubel, Jul 24 2022: (Start)

a(n) = (i*sqrt(3))^(n-1)*ChebyshevU(n-1, -i/(2*sqrt(3))) - 3^((n-1)/2)*(1 - (-1)^n)/2.

E.g.f.: (1/sqrt(39))*( 2*sqrt(3)*exp(x/2)*sinh(sqrt(13)*x/2) - sqrt(13)*sinh(sqrt(3)*x) ). (End)

MATHEMATICA

LinearRecurrence[{1, 6, -3, -9}, {0, 0, 1, 1}, 50] (* G. C. Greubel, Jul 24 2022 *)

PROG

(Magma) [n le 4 select Floor((n-1)/2) else Self(n-1) +6*Self(n-2) -3*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 24 2022

(SageMath)

@CachedFunction

def a(n): # a = A099579

if (n<4): return (n//2)

else: return a(n-1) +6*a(n-2) -3*a(n-3) -9*a(n-4)

[a(n) for n in (0..40)] # G. C. Greubel, Jul 24 2022

CROSSREFS
STATUS

approved

editing

#6 by Charles R Greathouse IV at Sat Jun 13 00:51:34 EDT 2015
LINKS

<a href="/index/Rec#order_04">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,6,-3,-9).

Discussion
Sat Jun 13
00:51
OEIS Server: https://oeis.org/edit/global/2439
#5 by R. J. Mathar at Sun Dec 21 19:25:50 EST 2014
STATUS

editing

approved

#4 by R. J. Mathar at Sun Dec 21 19:25:46 EST 2014
LINKS

<a href="/index/Rec#order_04">Index to sequences with linear recurrences with constant coefficients</a>, signature (1,6,-3,-9).

STATUS

approved

editing

#3 by Russ Cox at Fri Mar 30 18:59:01 EDT 2012
AUTHOR

_Paul Barry (pbarry(AT)wit.ie), _, Oct 23 2004

Discussion
Fri Mar 30
18:59
OEIS Server: https://oeis.org/edit/global/287
#2 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
COMMENTS

In general a(n)=sum{k=0..floor(n/2), C(n-k,k-1)r^(k-1)} has g.f. x^2/((1-r*x^2)(1-x-r*x^2)), and satisfies the recurrence a(n)=a(n-1)+2r*a(n-2)-r*a(n-3)-r^2*a(n-4).

KEYWORD

easy,nonn,new

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Sum C(n-k,k-1)3^(k-1), k=0..floor(n/2).

DATA

0, 0, 1, 1, 7, 10, 40, 70, 217, 427, 1159, 2440, 6160, 13480, 32689, 73129, 173383, 392770, 919480, 2097790, 4875913, 11169283, 25856071, 59363920, 137109280, 315201040, 727060321, 1672663441, 3855438727, 8873429050, 20444528200

OFFSET

0,5

COMMENTS

In general a(n)=sum{k=0..floor(n/2), C(n-k,k-1)r^(k-1)} has g.f. x^2/((1-r*x^2)(1-x-r*x^2)), and satisfies the recurrence a(n)=a(n-1)+2r*a(n-2)-r*a(n-3)-r^2*a(n-4).

FORMULA

G.f.: x^2/((1-3x^2)(1-x-3x^2)); a(n)=a(n-1)+6a(n-2)-3a(n-3)-9a(n-4).

CROSSREFS
KEYWORD

easy,nonn

AUTHOR

Paul Barry (pbarry(AT)wit.ie), Oct 23 2004

STATUS

approved