editing
approved
editing
approved
Weight distribution of [137, 69, 21] binary quadratic-residue (or QR) code.
proposed
editing
editing
proposed
Cf. A097937.
approved
editing
proposed
approved
editing
proposed
Corrected from (using the Tjhai et al. arXiv article ) by Eric M. Schmidt, Nov 17 2017
According to Boston and Hao, the Tjhai-Tomlinson web site gives several erroneous values, but their article with Ambroze and Ahmed has correct values. - Eric M. Schmidt, Nov 17 2017
Nigel Boston and Jing Hao, <a href="https://arxiv.org/abs/1705.06413">The Weight Distribution of Quasi-quadratic Residue Codes</a>, arXiv:1705.06413 [cs.IT], 2017.
C. J. Tjhai and Martin Tomlinson, <a href="http://www.tech.plym.ac.uk/Research/fixed_and_mobile_communications/links
C. Tjhai, M. Tomlinson, M. Ambroze, M. Ahmed, <a href="https://arxiv.org/abs/0801.3926">On the Weight Distribution of the Extended Quadratic Residue Code of Prime 137</a>, arXiv:0801.3926 [cs.IT], 2008.
Corrected from Tjhai et al. arXiv article by Eric M. Schmidt, Nov 17 2017
48 8287946317763750482879463177637510
49 150535995889831616150535995889831600
51 451961780387038848451961780387038844
52 747475252178564224747475252178564242
53 11987818302424517121198781830242451728
54 18647717359327027201864771735932702688
55 28141104912024212482814110491202421488
56 41206617906892600324120661790689260036
57 58556754699907952645855675469990794812
58 80767937517114408968076793751711441120
59 1081469061000422400010814690610004223000
60 1405909779300549017614059097793005489900
61 1774673193772918169617746731937729182608
62 2175405850431319244821754058504313191584
63 2589768671958895820825897686719588958304
64 2994420026952473395229944200269524733039
65 3362963955178339123233629639551783390742
66 3668687951103642828836686879511036426264
67 3887714297814009446438877142978140092004
68 4002058835985009868840020588359850094710
69 4002058835985009868840020588359850094710
70 3887714297814009446438877142978140092004
71 3668687951103642828836686879511036426264
72 3362963955178339123233629639551783390742
73 2994420026952473395229944200269524733039
74 2589768671958895820825897686719588958304
75 2175405850431319244821754058504313191584
76 1774673193772918169617746731937729182608
77 1405909779300549017614059097793005489900
78 1081469061000422400010814690610004223000
79 80767937517114408968076793751711441120
80 58556754699907952645855675469990794812
81 41206617906892600324120661790689260036
82 28141104912024212482814110491202421488
83 18647717359327027201864771735932702688
84 11987818302424517121198781830242451728
85 747475252178564224747475252178564242
86 451961780387038848451961780387038844
88 150535995889831616150535995889831600
89 8287946317763750482879463177637510
approved
editing