proposed
approved
proposed
approved
editing
proposed
C.-A. Laisant, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k201179s/f211.image">Sur les tableaux de sommes - Nouvelles applications</a>, Compt. Rendus de l'Association Francaise pour l'Avancement des Sciences, Aout. 04, 1893, pp. 206-216 (table given on p. 212).
proposed
editing
editing
proposed
........ .......................5...11..
....... ...................4...9...20..
...... ...............3...7..16...36..
..... ...........2...5..12..28.......
.... .......1...3...8..20..48.......
... ...0...1...4..12..32..80...... . (End)
G. C. Greubel, <a href="/A062111/b062111.txt">Rows n = 0..50 of the triangle, flattened</a>
a(n, n) = n; aA(n, k) = aA(n, k-1) + aA(n+1, k) if k > n with A(n, n) = n.
aA(n, k) = (k+n)*2^(k-n-1) if k >= n.
T(2n,2*n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 21 2009
From G. C. Greubel, Sep 28 2022: (Start)
T(n, k) = 2^(n-k-1)*(n+k) for 0 <= k <= n, n >= 0.
T(m*n, n) = 2^((m-1)*n-1)*(m+1)*A001477(n), m >= 1.
T(2*n-1, n-1) = A130129(n-1).
T(2*n+1, n-1) = 12*A001787(n).
Sum_{k=0..n} T(n, k) = A058877(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = 3*A073371(n-2), n >= 2.
T(n, k) = A152920(n, n-k). (End)
Rows start (0,1,4,12,32,...), (1,3,8,20,...), (2,5,12,...), (3,7,...), etc.
As a lower triangle (T(n, k)):
0;
1, 1;
4, 3, 2;
12, 8, 5, 3;
32, 20, 12, 7, 4;
80, 48, 28, 16, 9, 5;
192, 112, 64, 36, 20, 11, 6;
448, 256, 144, 80, 44, 24, 13, 7;
Table[2^(n-k-1)*(n+k), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)
(Magma) [2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022
(SageMath)
def A062111(n, k): return 2^(n-k-1)*(n+k)
flatten([[A062111(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022
approved
editing
proposed
approved
editing
proposed
From Philippe Deléham, Apr 15 2007 : (Start)
Triangle A152920 reversed . [_- _Philippe Deléham_, Apr 21 2009]
a(n, n) = n; a(n, k) = a(n, k-1) + a(n+1, k) if k>n. a(n, k)=(k+n)*2^(k-n-1) if k >= n.
a(n, k) = (k+n)*2^(k-n-1) if k >= n.
T(2n,n) = 3*n*2^(n-1) = 3*A001787(n). [_- _Philippe Deléham_, Apr 21 2009]
approved
editing
reviewed
approved
proposed
reviewed