[go: up one dir, main page]

login
Revision History for A062111 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Upper-right triangle resulting from binomial transform calculation for nonnegative integers.
(history; published version)
#21 by N. J. A. Sloane at Sat Oct 01 00:19:52 EDT 2022
STATUS

proposed

approved

#20 by Michel Marcus at Fri Sep 30 02:38:55 EDT 2022
STATUS

editing

proposed

#19 by Michel Marcus at Fri Sep 30 02:37:37 EDT 2022
LINKS

C.-A. Laisant, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k201179s/f211.image">Sur les tableaux de sommes - Nouvelles applications</a>, Compt. Rendus de l'Association Francaise pour l'Avancement des Sciences, Aout. 04, 1893, pp. 206-216 (table given on p. 212).

STATUS

proposed

editing

#18 by G. C. Greubel at Wed Sep 28 23:13:05 EDT 2022
STATUS

editing

proposed

#17 by G. C. Greubel at Wed Sep 28 23:11:54 EDT 2022
COMMENTS

........ .......................5...11..

....... ...................4...9...20..

...... ...............3...7..16...36..

..... ...........2...5..12..28.......

.... .......1...3...8..20..48.......

... ...0...1...4..12..32..80...... . (End)

LINKS

G. C. Greubel, <a href="/A062111/b062111.txt">Rows n = 0..50 of the triangle, flattened</a>

FORMULA

a(n, n) = n; aA(n, k) = aA(n, k-1) + aA(n+1, k) if k > n with A(n, n) = n.

aA(n, k) = (k+n)*2^(k-n-1) if k >= n.

T(2n,2*n, n) = 3*n*2^(n-1) = 3*A001787(n). - Philippe Deléham, Apr 21 2009

From G. C. Greubel, Sep 28 2022: (Start)

T(n, k) = 2^(n-k-1)*(n+k) for 0 <= k <= n, n >= 0.

T(m*n, n) = 2^((m-1)*n-1)*(m+1)*A001477(n), m >= 1.

T(2*n-1, n-1) = A130129(n-1).

T(2*n+1, n-1) = 12*A001787(n).

Sum_{k=0..n} T(n, k) = A058877(n+1).

Sum_{k=0..n} (-1)^k*T(n, k) = 3*A073371(n-2), n >= 2.

T(n, k) = A152920(n, n-k). (End)

EXAMPLE

Rows start (0,1,4,12,32,...), (1,3,8,20,...), (2,5,12,...), (3,7,...), etc.

As a lower triangle (T(n, k)):

0;

1, 1;

4, 3, 2;

12, 8, 5, 3;

32, 20, 12, 7, 4;

80, 48, 28, 16, 9, 5;

192, 112, 64, 36, 20, 11, 6;

448, 256, 144, 80, 44, 24, 13, 7;

MATHEMATICA

Table[2^(n-k-1)*(n+k), {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 28 2022 *)

PROG

(Magma) [2^(n-k-1)*(n+k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 28 2022

(SageMath)

def A062111(n, k): return 2^(n-k-1)*(n+k)

flatten([[A062111(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Sep 28 2022

CROSSREFS

Rows include (essentially) A001787, A001792, A034007, A045623, A045891.

Rows include (essentially) A001787, A001792, A045623, A045891, A034007. Diagonals include (essentially) A001477, A005408, A008586, A017113, A017113, A008598. Column sums are A058877, A017113.

Column sums are A058877.

Cf. A058877, A073371, A130129, A152920.

STATUS

approved

editing

#16 by Joerg Arndt at Mon Jan 27 01:23:50 EST 2020
STATUS

proposed

approved

#15 by Jon E. Schoenfield at Sun Jan 26 22:24:04 EST 2020
STATUS

editing

proposed

#14 by Jon E. Schoenfield at Sun Jan 26 22:23:54 EST 2020
COMMENTS

From Philippe Deléham, Apr 15 2007 : (Start)

Triangle A152920 reversed . [_- _Philippe Deléham_, Apr 21 2009]

FORMULA

a(n, n) = n; a(n, k) = a(n, k-1) + a(n+1, k) if k>n. a(n, k)=(k+n)*2^(k-n-1) if k >= n.

a(n, k) = (k+n)*2^(k-n-1) if k >= n.

T(2n,n) = 3*n*2^(n-1) = 3*A001787(n). [_- _Philippe Deléham_, Apr 21 2009]

CROSSREFS

Cf. A111297, A159694, A159695, A159696, A159697. [_- _Philippe Deléham_, Apr 21 2009]

STATUS

approved

editing

#13 by Peter Luschny at Sun Feb 01 09:43:12 EST 2015
STATUS

reviewed

approved

#12 by Joerg Arndt at Sun Feb 01 08:33:16 EST 2015
STATUS

proposed

reviewed