proposed
approved
proposed
approved
editing
proposed
Triangle T(n,k) of number of digraphs with a quasi-source on n unlabeled nodes and with k arcs, k = 0,1,..,n*(n-1).
proposed
editing
editing
proposed
Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a234/A234007
1, 0, 1, 1, 0, 0, 3, 4, 4, 1, 1, 0, 0, 0, 7, 21, 37, 47, 38, 27, 13, 5, 1, 1, 0, 0, 0, 0, 18, 90, 309, 661, 1125, 1477, 1665, 1489, 1154, 707, 379, 154, 61, 16, 5, 1, 1, 0, 0, 0, 0, 0, 44, 374, 1981, 7107, 19166, 41867, 77194, 122918, 170308, 206980, 220768, 207301, 171008, 124110, 78813, 43862, 21209, 8951, 3242, 1043, 288, 76, 17, 5, 1, 1
more,nonn,tabf
More terms from Sean A. Irvine, May 30 2022
approved
editing
proposed
approved
editing
proposed
V. Jovovic, G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00112-6">Enumeration of labeled quasi-initially connected digraphs</a>, Discrete Math., 224 (2000), 151-163.
Table starts:
[1],
[0,1,1],
[0,0,3,4,4,1,1],
[0,0,0,7,21,37,47,38,27,13,5,1,1],
...
[1],[0,1,1],[0,0,3,4,4,1,1],[0,0,0,7,21,37,47,38,27,13,5,1,1],...; Number of digraphs with a quasi-source on 3 unlabeled nodes is 13=3+4+4+1+1.
approved
editing
editing
approved