(MAGMAMagma) A := Basis( ModularForms( Gamma1(9), 1), 100); A[1] - 3*A[2] + 6*A[4]; \\ Michael Somos, Jan 31 2015
(MAGMAMagma) A := Basis( ModularForms( Gamma1(9), 1), 100); A[1] - 3*A[2] + 6*A[4]; \\ Michael Somos, Jan 31 2015
proposed
approved
editing
proposed
a(n) is the coefficient of q^n in b(q)=eta(q)^3/eta(q^3) = (3/2)*a(q^3)-a(q)/2 where a(q)=theta(Hexagonal) . - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 07 2002
proposed
editing
editing
proposed
a(n) = -3 * b(n) except for a(0) = 1, where b() =A123477() is multiplicative with b(p^e) = -2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 2, 5 (mod 6).
approved
editing
proposed
approved
editing
proposed
Name edited Edited by M. F. Hasler, May 07 2018
From Michael Somos, May 20 2005: (Start)
Euler transform of period 3 sequence [ -3, -3, -2, ...]. - _Michael Somos_, May 20 2005
a(n) = -3 * b(n) except for a(0) = 1, where b() is multiplicative with a(0) = 1 and b(p^e) = -2 if p = 3 and e>0, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 2, 5 (mod 6). - _Michael Somos_, May 20 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - 2*u*w^2 + u^2*w. - _Michael Somos_, May 20 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2*u6 - 2*u1*u2*u6 + 4*u2^2*u6 - 3*u2*u3^2. - _Michael Somos_, May 20 2005
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1*u2*u3 + u1^2*u3 - 3*u1*u6^2 + u2^2*u3. - _Michael Somos_, May 20 2005(End)