[go: up one dir, main page]

login
A198715 revision #10

A198715
T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.
17
1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
OFFSET
1,4
COMMENTS
Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..496 (terms 1..180 from R. H. Hardin)
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Vertex Coloring
Wikipedia, Graph Coloring
EXAMPLE
Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
CROSSREFS
Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712-A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).
Sequence in context: A055883 A366588 A085843 * A216663 A198906 A198982
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 29 2011
STATUS
proposed