[go: up one dir, main page]

login
A055883
Exponential transform of Pascal's triangle A007318.
1
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 15, 60, 90, 60, 15, 52, 260, 520, 520, 260, 52, 203, 1218, 3045, 4060, 3045, 1218, 203, 877, 6139, 18417, 30695, 30695, 18417, 6139, 877, 4140, 33120, 115920, 231840, 289800, 231840, 115920, 33120, 4140, 21147
OFFSET
0,4
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, ...] DELTA [1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 10 2005
FORMULA
a(n,k) = Bell(n)*C(n,k).
E.g.f.: A(x,y) = exp(exp(x+xy)-1).
EXAMPLE
1;
1, 1;
2, 4, 2;
5, 15, 15, 5;
15, 60, 90, 60, 15; ...
CROSSREFS
Cf. A000110, A007318. Row sums give A055882.
Sequence in context: A268740 A120493 A085880 * A366588 A085843 A198715
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jun 09 2000
STATUS
approved