[go: up one dir, main page]

login
A120493
Triangle T(n,k) read by rows ; multiply row n of Pascal's triangle (A007318) by A024175(n).
0
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 428, 2996, 8988, 14980, 14980, 8988, 2996, 428, 1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416
OFFSET
0,4
COMMENTS
Triangle given by [1, 1, 1, 1, 1, 1, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
FORMULA
T(n,k)=A007318(n,k)*A024175(n).
T(n,k)=6*T(n-1,k)+6*T(n-1,k-1)-10*T(n-2,k)-20*T(n-2,k-1)-10*T(n-2,k-2)+4*T(n-3,k)+12*T(n-3,k-1)+12*T(n-3,k-2)+4*T(n-3,k-3) for n>3, T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(3,0)=T(3,3)=5, T(3,1)=T(3,2)=15, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 22 2013
G.f.: (-1 +5*x +5*x*y -6*x^2 -12*x^2*y -6*x^2*y^2 +x^3 +3*x^3*y +3*x^3*y^2 +x^3*y^3)/( (-1+2*x+2*x*y) *(2*x^2*y^2+4*x^2*y+2*x^2-4*x*y-4*x+1) ). - R. J. Mathar, Aug 12 2015
EXAMPLE
Triangle begins:
1;
1, 1;
2, 4, 2;
5, 15, 15, 5;
14, 56, 84, 56, 14;
42, 210, 420, 420, 210, 42;
132, 792, 1980, 2640, 1980, 792, 132;
428, 2996, 8988, 14980, 14980, 8988, 2996, 428;
1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416 ;...
CROSSREFS
Sequence in context: A117903 A167685 A268740 * A085880 A055883 A366588
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Aug 05 2006
STATUS
approved