OFFSET
1,1
COMMENTS
Prime p divides a(p). Prime p divides a(p-2) for p>3. p^2 divides a(p-2) for prime p=7. p^2 divides a(p^2-2) for prime p except p=3. p^3 divides a(p^2-2) for prime p=7. p^3 divides a(p^3-2) for prime p>3. p^4 divides a(p^3-2) for prime p=7. p^4 divides a(p^4-2) for prime p>3. p^5 divides a(p^3-2) for prime p=7. It appears that p^k divides a(p^k-2) for prime p>3 and 7^(k+1) divides a(7^k-2) for integer k>0.
FORMULA
a(n) = 1 + Sum[ k^(n-1), {k,1,n}]. a(n) = 1 + A076015[n].
MATHEMATICA
Table[(1+Sum[k^(n-1), {k, 1, n}]), {n, 1, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Aug 04 2006
STATUS
approved