[go: up one dir, main page]

login
A374012
Least number of 6th powers needed to represent n.
3
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
OFFSET
1,2
COMMENTS
a(703) = 73.
REFERENCES
Pillai, S. S. (1940) On Waring’s problem g(6) = 73. Proc. Indian Acad. Sci. 12A: 30-40
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
FORMULA
a(n) <= 73.
PROG
(PARI) a_vector(n, k=6) = my(v=vector(n), cnt=0, d=0, p=1, s=sum(j=1, sqrtnint(n, k), x^j^k)+x*O(x^n)); while(cnt<n, d++; p*=s; for(i=1, n, if(!v[i] && polcoef(p, i), v[i]=d; cnt++))); v;
(Python)
from itertools import count
from sympy.solvers.diophantine.diophantine import power_representation
def A374012(n):
if n == 1: return 1
for k in count(1):
try:
next(power_representation(n, 6, k))
except:
continue
return k # Chai Wah Wu, Jun 25 2024
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Seiichi Manyama, Jun 25 2024
STATUS
approved