[go: up one dir, main page]

login
A097141
Expansion of x*(1+2*x)/(1+x)^2.
4
0, 1, 0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59, 60
OFFSET
0,5
COMMENTS
Partial sums of A097140.
Binomial transform is x(1+x)/(1-x), or {0,1,2,2,2,2,....}.
Second binomial transform is x/((1-x)^2(1 - 2x)), or Eulerian numbers A000295(n+1).
FORMULA
G.f.: x*(1+2*x)/(1+x)^2.
a(n) = (n-2)*(-1)^n + 2*0^n.
a(n) = -2*a(n-1) - a(n-2) for n > 2.
a(n) = A099570(n) for n > 1. - R. J. Mathar, Dec 15 2008
a(n) = (Sum_{k=1..n} k*(-1)^(n-k)*binomial(n-1,k-1)*binomial(2*n-k-1,n-1))/n, n>0, a(0)=0. - Vladimir Kruchinin, Mar 09 2014
a(n) = A038608(n-2) for n > 2. - Georg Fischer, Oct 06 2018
E.g.f.: 2 - exp(-x)*(2 + x). - Stefano Spezia, Mar 07 2023
MAPLE
A097141:=n->(n-2)*(-1)^n: 0, seq(A097141(n), n=1..100); # Wesley Ivan Hurt, Dec 11 2016
MATHEMATICA
CoefficientList[Series[x (1 + 2 x)/(1 + x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Mar 11 2014 *)
PROG
(Magma) [0] cat [(n-2)*(-1)^n : n in [1..100]]; // Wesley Ivan Hurt, Dec 11 2016
(PARI) a(n)=if(n, (n-2)*(-1)^n, 0) \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 29 2004
STATUS
approved