[go: up one dir, main page]

login
A373674
Last element of each maximal run of powers of primes (including 1).
22
5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
OFFSET
1,1
COMMENTS
A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373673.
Consists of all powers of primes k such that k+1 is not a power of primes.
EXAMPLE
The maximal runs of powers of primes begin:
1 2 3 4 5
7 8 9
11
13
16 17
19
23
25
27
29
31 32
37
41
43
47
49
MATHEMATICA
pripow[n_]:=n==1||PrimePowerQ[n];
Max/@Split[Select[Range[nn], pripow], #1+1==#2&]//Most
CROSSREFS
For prime antiruns we have A001359, min A006512, length A027833.
For composite runs we have A006093, min A008864, length A176246.
For prime runs we have A067774, min A025584, length A251092 or A175632.
For squarefree runs we have A373415, min A072284, length A120992.
For nonsquarefree runs we have min A053806, length A053797.
For runs of prime-powers:
- length A174965
- min A373673
- max A373674 (this sequence)
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).
Sequence in context: A335486 A347771 A294277 * A043721 A043727 A043731
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 16 2024
STATUS
approved