[go: up one dir, main page]

login
A371414
Euler phi function applied to the cubefull exponentially odd numbers (A335988).
3
1, 4, 18, 16, 100, 64, 72, 162, 294, 256, 288, 400, 1210, 648, 1024, 1458, 2028, 1176, 2500, 1800, 1152, 1600, 4624, 6498, 2592, 4096, 5292, 4840, 4704, 11638, 4608, 6400, 14406, 5832, 8112, 13122, 23548, 10000, 7200, 28830, 16200, 10368, 16384, 21780, 18496, 19360
OFFSET
1,2
LINKS
FORMULA
a(n) = A000010(A335988(n)).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/((p-1)^2*(p+1))) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 1/p^3 + 2/p^4) = 1.43921640806700099050... .
MATHEMATICA
Join[{1}, EulerPhi /@ Select[Range[20000], AllTrue[Last /@ FactorInteger[#], #1 > 1 && OddQ[#1] &] &]]
PROG
(PARI) lista(max) = {my(f, ans); print1(1, ", "); for(k = 2, max, f = factor(k); ans = 1; for (i = 1, #f~, if (f[i, 2] == 1 || !(f[i, 2] % 2), ans = 0; break)); if(ans, print1(eulerphi(f), ", "))); }
CROSSREFS
Similar sequences: A323333, A371414, A371415.
Sequence in context: A070923 A064220 A205105 * A231957 A275952 A081420
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Mar 22 2024
STATUS
approved