[go: up one dir, main page]

login
A371411
Number of Dyck paths of semilength 2n having exactly n (possibly overlapping) occurrences of the consecutive step pattern UDU, where U = (1,1) and D = (1,-1).
2
1, 1, 3, 20, 140, 1134, 9702, 87516, 817245, 7852130, 77135630, 771742608, 7839348244, 80661853300, 839138980500, 8813312133840, 93339369441540, 995827949882370, 10694044148599350, 115515073043785800, 1254354063204682440, 13685749828961247180
OFFSET
0,3
LINKS
FORMULA
a(n) = A091869(2n,n).
a(n) mod 2 = 1 <=> n in { round(2^(2*k-3)) : k >= 0 } = { A081294 } U { 0 }.
EXAMPLE
a(1) = 1: UDUD.
a(2) = 3: UDUDUUDD, UDUUDUDD, UUDUDUDD.
a(3) = 20: UDUDUDUUDDUD, UDUDUDUUUDDD, UDUDUUDDUDUD, UDUDUUDUDDUD, UDUDUUDUUDDD, UDUDUUUDUDDD, UDUUDDUDUDUD, UDUUDUDDUDUD, UDUUDUDUDDUD, UDUUDUDUUDDD, UDUUDUUDUDDD, UDUUUDUDUDDD, UUDDUDUDUDUD, UUDUDDUDUDUD, UUDUDUDDUDUD, UUDUDUDUDDUD, UUDUDUDUUDDD, UUDUDUUDUDDD, UUDUUDUDUDDD, UUUDUDUDUDDD.
a(4) = 140: UDUDUDUDUUDDUUDD, UDUDUDUDUUUDDDUD, UDUDUDUDUUUDDUDD, ..., UUUDUDUUDUDUDDDD, UUUDUUDUDUDUDDDD, UUUUDUDUDUDUDDDD.
MAPLE
a:= proc(n) option remember; `if`(n<2, 1, (2*(n-1)*(2*n-1)^2*
a(n-1)+12*(n-2)*(2*n-1)*(2*n-3)*a(n-2))/((n+1)*n*(n-1)))
end:
seq(a(n), n=0..21);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 22 2024
STATUS
approved