[go: up one dir, main page]

login
A363349
Array read by antidiagonals: T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and columns and complementation of columns.
8
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 3, 1, 1, 1, 5, 7, 8, 3, 1, 1, 1, 6, 11, 19, 10, 4, 1, 1, 1, 7, 16, 41, 32, 16, 4, 1, 1, 1, 8, 23, 81, 101, 68, 20, 5, 1, 1, 1, 9, 31, 153, 299, 301, 114, 29, 5, 1, 1, 1, 10, 41, 273, 849, 1358, 757, 210, 35, 6, 1
OFFSET
0,9
COMMENTS
T(n,k) is also the number of equivalence classes of n X k binary matrices with an even number of 1's in each column under permutation of rows and columns.
LINKS
M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
EXAMPLE
Array begins:
======================================================
n/k| 0 1 2 3 4 5 6 7 8 ...
---+--------------------------------------------------
0 | 1 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 4 5 6 7 8 9 ...
3 | 1 2 4 7 11 16 23 31 41 ...
4 | 1 3 8 19 41 81 153 273 468 ...
5 | 1 3 10 32 101 299 849 2290 5901 ...
6 | 1 4 16 68 301 1358 6128 27008 114763 ...
7 | 1 4 20 114 757 5567 43534 343656 2645494 ...
8 | 1 5 29 210 1981 23350 319119 4633380 67013431 ...
...
PROG
(PARI) \\ Compare A028657.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t)={sum(j=1, #q, gcd(t, q[j]))}
T(n, k)={if(n==0, 1, my(s=0); forpart(q=n, my(e=1<<valuation(Vec(q), 2)); s+=permcount(q)*polcoef(exp(sum(t=1, k, 2^(K(q, t)-(t%e==0))/t*x^t) + O(x*x^k)), k)); s/n!)}
CROSSREFS
A259344 is the same array without the first row and column read by upward antidiagonals.
Columns k=0..6 are A000012, A004526(n+2), A005232, A006381, A006382, A056204, A056205.
Rows n=2..4 are A000027(n+1), A000601, A006380.
Main diagonal is A006383.
Sequence in context: A123320 A054123 A119269 * A362648 A333893 A225630
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, May 28 2023
STATUS
approved