[go: up one dir, main page]

login
A333893
Array read by antidiagonals: T(n,k) is the number of unlabeled loopless multigraphs with n nodes of degree k or less.
9
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 5, 3, 1, 1, 1, 5, 8, 10, 3, 1, 1, 1, 6, 14, 26, 16, 4, 1, 1, 1, 7, 20, 61, 60, 29, 4, 1, 1, 1, 8, 30, 128, 243, 184, 45, 5, 1, 1, 1, 9, 40, 254, 800, 1228, 488, 75, 5, 1, 1, 1, 10, 55, 467, 2518, 7252, 6684, 1509, 115, 6, 1
OFFSET
0,9
COMMENTS
T(n,k) is the number of non-isomorphic n X n nonnegative integer symmetric matrices with all row and column sums equal to k and isomorphism being up to simultaneous permutation of rows and columns. The case that allows independent permutations of rows and columns is covered by A333737.
Terms may be computed without generating each graph by enumerating the graphs by degree sequence using dynamic programming. A PARI program showing this technique for the labeled case is given in A188403. Burnside's lemma as applied in A192517 can be used to extend this method to the unlabeled case.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..377 (antidiagonals 0..26)
EXAMPLE
Array begins:
==============================================
n\k | 0 1 2 3 4 5 6 7
----+-----------------------------------------
0 | 1 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 2 3 4 5 6 7 8 ...
3 | 1 2 5 8 14 20 30 40 ...
4 | 1 3 10 26 61 128 254 467 ...
5 | 1 3 16 60 243 800 2518 6999 ...
6 | 1 4 29 184 1228 7252 38194 175369 ...
7 | 1 4 45 488 6684 78063 772243 6254652 ...
...
CROSSREFS
Rows n=0..4 are A000012, A000012, A000027(n+1), A006918(n+1), A333897.
Columns k=0..5 are A000012, A008619, A000990, A333894, A333895, A333896.
Sequence in context: A119269 A363349 A362648 * A225630 A129713 A096669
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 08 2020
STATUS
approved