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Abstract—Cellular switching theory gives rise to the problems of
counting the number of equivalence classes of m X n matrices of zeros
‘and ones under: 1) row and column permutations; and 2) row and col-
umn permutations together with column complementations. A number
of techniques are given for the solution of these problems.

Index Terms—Binary matrices, cellular logic, counting theory, logical
design, switching theory.

I. STATEMENT OF THE PROBLEM

T IS well known that many problems of switching theory
I(':an be recast as problems involving 0-1 matrices. In the
present paper, we consider a combinatorial problem arising
from cellular logic. We wish to find the number of equivalence
classes of 0-1 matrices with m rows and n columns under sev-
eral definitions of equivalence. For instance, we will take
equivalence to mean ‘“equivalent under row and column per-
mutations.” Another definition will be row permutations
together with column permutations and/or complementations.
The reader is referred to [S] for the correspondence between
the mathematical problems under discussion here and cellular
switching theory.

In the remainder of this section, we indicate a formal state-
ment of the problem and some basic definitions. We hope for
familiarity with basic counting theory as descnbed by, say,
[6] or [3].

Let S,, denote the symmetric group on {1, -,n} of order
n! Let M(m, n) be the set of dll m X n matrices whose entries
are 0 or 1. Let us say that for A, B € M(m, n), we have

A. El B iff (bil') = (ao—l (i)‘,’_-l (i))
for some 0 €S,,,7E S,,. Inwords, B is equal to A after a row
permutation by ¢ and a column permutation by 7.
Example: 1et m=n=3 and ¢ =(123) and 7=(12). If we

compute (a1 @, ! (”), we get

a3 @3y dss

412 @3y dy3

Q22 Q31 dz3

Our next definition allows column complementations as well.
If we have A, B € M(m, n) we say that

AzzBlffB’:(bl "'bn)

Manuscript received November 13, 1972; revised July 9, 1973. This
work was supported in part by NSF Grant GJ 474,

The author is with the Department of Computer Science, University
of California, Berkeley, Calif.

where each column by is the kth column of (a
or its complement.
Example: m=n=3, If we take

@, 17 ()

A=

— O

1
0
1

S

0= (123) 7=(12), and complement columns 2 and 3, we
obtain .

100
B=111 0].
000

We can now ask for the number of equivalence classes of
matrices in M(m, n) under =; and under =,. Let s,,, be the
former quantity and ¢,,,, the latter.

II. SEVERAL SOLUTIONS

We will begin by shéwing a number of different methods for
obtaining the desired results for =;. One of these methods
generalizes very naturally for =,

First, we need some notation and some basic concepts from
combinatorial theory [2], [3], [6].

Definition: Let G be a permutation group of finite order g
which acts on a finite set S with s elements. Let f,,- -, f; be
s indeterminates and let g¢; .., j) =8(j)be the number of
permutations in G with j; cycles of length i fori=1,---,s.
The ¢ycle index polynomial of G acting on S is

Zo(fis ) =QUD Y &Gy, iplf o fle @)
02}
where the sum is over all nonnegative integers j;,« -+ ,jg such
that
s . .
D dji=s. @
i=1

As an abbreviation, we may rephrase the previous condition,
(2), as a sum over the partitions of s.

Examples: 1f welet S={0,--+,m- 1} and let C,, be the
cyclic group generated by the cycle (0,1, ++,m- 1) then

Zcm(fl’. o :fm)=(]/m) Z ¢(d)f:‘(n/d
dim
where ¢(¢) is the Euler ¢ function.
As a second example, let S= {1, ~--,n} and let S, be the
symmetric group of all n! permutations of S. Then, it is well
known that
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where the sum is over all partitions of n.

Another of the techniques that we shall need involves the
“cross operation” on polynomials. This is defined in the fol-
lowing lemma, which is quoted without proof from [2].

Lemma 1: If « is a permutation on a set X with |[X|=a and
o has cycle structure denoted by f’ 1. f/a and B isa permu-
tation on Y with |Y| = b and g has cycle structure f1 f
then the permutation (a, ) acting on X X Y by the rule

g ' (@, ) (x,») = (ax, By) 4
‘has cycle structure denoted by

(,,ﬁl f?’) x(ﬁ f:") =11 11 U x £ka)

q=1 p=1 g=1

=l£[ 12[ (PQ) (5)
p=1 q=1

where {p, q) is the least common multiple of p and q while -

(p, q) is the greatest common divisor of p and q.
" Some examples of this operation are

[IXfa=r}
O AXG = X (X =1

One can extend the notation to polynomials in the obvious
way. For example,

Zs, XZs, =5 (f1+H)X §U3 + 300, +2F5)

= SO X I H3UDX () +2(fE X f3)
+(fa Xf?)+3(fz XL +2(f2 X f3))

=SS +313r2 + 213 + 3 430202+ 2fe)

=5 (P 3713 + 215 + 413 + 2f). (©6)

* We shall also need a very simple form of Pélya’s theorem.
Suppose we have a permutation group G acting on a finite set
D with |[D| =s. Let R be a finite set with |[R|=q. With each
TE€ R, we have an associated weight w(r) €N, If fis any func-
tion from D to R, define w(f) = x* where k = £ 4 p w(/(@)).
Two functions f and g from D to R are said to be equivalent if
w(f)=w(g). Polya’s theorem will count the number of
classes of such functions once we have a generating function
onR. Solet

V)= 3 Yax® Q)

kEN

&

wh' Y. is the number of elements of R with weight k.
Finamy, we need a generating functlon for the number of
functions. We define

Pixy= 3 pex®

keEN
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where py is the number of equivalence classes of functions of
weight x*. Pélya’s theorem can now be stated. It gives us a re-
lationship between these quantities.

Theorem 1 (Pélya):

P(x)=Zg(Y(x), ¥(x*), -, ¥(x*)).

Corollary: The total number of equivalence classes of func-
tions from D to R is

P()y=25@, " ,9)-

Proof: Foreachr€R, take w(r) = 0. Then ¢ (x) =q.
We can now use these techniques to solve the counting prob-
lem for =,.
Theorem 2: The number of =,-equivalence classes of ma-
trices in M (m, n) is given by

1 mln!
Smn = tynt Z Z
G @ (T i (T x
[Tipto’) [ I] kq'a®a
p=1 q=1
m n
2 X jpkqp,@)
.9P=1g=1 6

where (p, q) is the greatest common divisor of p and q. The
sums over (j) and (k) are over the partitions of m and n,
respectively.

Proof: If we have a matrix A EM(m, n) then =, allows
row and column permutations. That is, we allow permutations
g€ S, and 7ES,,. Since these permutations may act indepen-
dently, we are working with a group that is the “direct prod-
uct” of S,, and S, and whose cycle index polynomial is
Zg, X Zg, (see [2, theorem 4.2]). To use Pélya’s theorem,

-we note that R = {0, 1} and take w(0) =0 and w(1) = 1. Then

Y (x) =1 +x. By the corollary to Pélya’s theorem
P(x)=Zg, xs,2,"*",2).

Carrying out the computations with the aid of Lemma 1, we
obtain

{(p,q)
p=1 q=1
Syun = P(1) = 1 m!in!
mn — -
minl (7 (& it .p,-,,] [ﬁ k 'qkq]
q
p=1 q=1
m n
E E ipkq(P:Q)
.pPp=1q=1 . QED.

In practice, one can compute these results simply without
using such formulas, as the following example shows.

Ixample: Let m=2,n=3. Weneed to compute Zs2 X 8,y-

Since this was done in an earlier example, using (6), we get

i e o e i
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P =5 (25 +3:2%+2-22+4-2>+2-2)

=4 (156)=13. \

It is interesting to note that the problem that we have just
solved admits of a graph-theoretical interpretation. Anm X n
matrix of zeros and ones is equivalent to a bipartite graph,i.e.,

a graph whose vertex set can be partitioned into two disjoint 2623 25—
sets X and Y such that all edges connect a vertex of X with 32?2

vertex of Y [7]. Thus we have the following result.

Corollary: The number of nonisomorphic bipartite graphs
with m nodes in one set and » in the other set is given by (8).

The techniques used so far are similar to those used by
Harary [1] in counting bicolored graphs. The results are not
the same when m = n since a different symmetry group is in-
volved in that case for such graphs. Also see [8] for related
work. 35>

We now indicate a totally different way to use Pdlya’s the?k
rem to solve the same problem for equivalence with respect
to El .
terial available in the switching theory textbooks and, more
importantly, it generalizes to the case of equivalence with re-
spect to =, . 63€0

The idea of our new approach is to regard S,, as acting on the
set of n-tuples of zeros and ones. This is exactly what is done
in switching theory for computing the number of classes of
functions. Let us call this representation of the symmetric
group S,,. The cycle index of S, has been determined [2],
[3] and a table of such polynomials is tabulated in [3]. To
use these polynomials, we note that this problem is to count
the number of classes of functions with domain {0, 1}” and
range R =N. We choose w(p) =p for p €N and hence ¥ (x) =
1+x+x2+:--=1/1-x because this allows each n-tuple to
appear 0 times, 1 time, * « + . Thus we have the following result.

Theorem 3: The number of =, equivalence classes of ma-
trices in M(m, n) is given by the coefficient of x™

1
1- xzn) '

Proof: Using R and Y as above and taking G =S}, the
symmetric group on {0, 1}”, we are enumerating equivalence
classes of sets of n-tuples under Sy, i.e., elements of M(m, n)
under =;. By Pélya’s theorem, the result follows.

Example: Let n=3. From [3, Appendix 1],

Zs: = L(f3+371 13+ 203 1))

1\® 3 2
P(")z%[(l—x) S Er e AT

=14+4x+13x% +36x3 +87x* +---

1 1
S A

- _ 27
m,EN l-x"1-x

This last proof admits an easy generalization to equivalence
under =,. We merely replace S,, by G,,, the group of permuta-
tions and/or complementations on {0, 1}". G, has been ex-
tensively studied. Formulas for its cycle index have been com-
puted and a table of them appears in [3]. Thus we have the
following result.
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TABLE I
THE NUMBER OF 0-1 MATRICES UNDER Row A COLUMN
PERMUTATIONS,

A Frows

m 1 2 3
o3 4 5 ' 6 7/

> 3 ™~ 7 N 22 34 50
31> 4 13 -3 190 386

b 5 22 87 317« 1053 3250

5 6 34 190 1053 5624 28576
6 7 50 386 3250 28576 251610
7 8 70 - 734 9343 136 758 2141733
8 9 95 1324 25207 613894 17256831
9 | 10 125 2284 64167 2583164 130237768
10 | 11 161 3790 155004 10208743 917558397

TABLE I
THE NUMBER OF 0-1 MATRICES UNDER ROW PERMUTATIONS WITH
COLUMN PERMUTATIONS AND/OR COMPLEMENTATIONS

This second solution has the advantages of using ma-

v tmn 'ﬁ15—7 34

n

w1 2 3 4 5 6

1Ty 1 - — 1
2 )\- \—;\ 4~ ﬁr 7¢
L3 2 g- g aﬂ 16 X

— : 153

s | 3o #™ 3 —i01 = 299 — B

6| 4916 % 301 1358 6128

7 472077 114 757 5567 43534

8| 57729 210 1981 23350 319 119

9| 5 35 133 4714 91998 2255466

10 6/ 47 562 11133 351058 15307395

\

A
0381 (2%2

Theorem 4: The number of =, _equivalence classes of ma-
trices in M(im, n) is given by the coefficient of x™ in

1 1 1
Z tmn-xm =P(x)=ZG,,(1_ s 25" 2n)-

meN x 1-x 1-x

Proof: The argument parallels that of the previous theo-
rem and is omitted.

To compute the number of classes for modest values of m
and n, the tables in [3, Appendices 1 and II] were used along
with the previous two theorems. G. Mantero programmed the
calculations using a higher level computer language for alge-
braic manipulations. The results are tabulated in Tables I
and II.

The tables suggest the following identities which can be
established for arbitrary m and n. -

Theorem 5:

a) Forallm,n2>0, S, =Spm-

b) Foralln =0, Sipn=ntl.

¢) Foralln>0, tip=1.

d) Foralln >0, thy=n+l.

e) Forallm=>0, tm, =1+ |m[2] where [x] is the
“floor” function, i.e., the largest integer <x.

f) Forallm such that m=1 mod 2,

_((m+5)2
e (57,




{HARRISON: BINARY MATRICES
F F]

g) Forallm>1

mcd [(’"; 3) +2(Imf2] + 1)(Im[2] +1)

+3([m/2j -[ J)([m/Z] +1)

L e ]

Proof: Clearly a), b), and c) are trivial to verify. To show

:d), note that each such matrix has 2n entries and so may have

<0 ones, 1 one, -, 2n ones. But the matrices with 7 ones are

requivalent (under =,) to those with 2n - i ones for i < n.

i Thus there are exactly n + 1 classes.

. To prove e), the technique is similar. We note that the
iclasses can be characterized by min {k, m - ¥} where & is the
_number of ones in the array. We need to find the number of

isets of two nonnegative integers i and j such that i + j=m.

,CIearly this is |m/2] +1..

' Only g) has an interesting proof, as f) is a special case of g).
~We know that

! Zo, =5 (S1+211f, +31F +21).

i'Thus

! . [ 1 2 3 2

13 (1~x)4+(1,--x)’(1-x’)+(1—x2)2+1-x“]'

1 ®

sz the binomial theorem

1« fe+3)
(1—x)4",,§0( 3 )x : (10)

;flt i§ not hard to show that

§ 1 e

4 RS -k§0 (Lk/2] + 1) ([k/2] + 1)

,‘ | (1

2; - V 2m _ i k-1

T ) = Z (m+1x —Z 1k/2] - —2—

2 m20 k>0 .

i | (k2] + DxF (12)

4;.z:x-tm z

R ([k/4] —l 1J)x". 13)

iCollecting together the coefficients of x* in (9) after the sub-
stitution of (10), (11), (12), and (13) gives the result.

III. SoME OPEN QUESTIONS

- One often wishes to change the definition of equivalence to
sule out degenerate cases. For instance, one niight wish to

R AR e M A el R e S 5 o e LAY e M b L NS NS TR
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enumerate only nondegenerate equivalence classes of matrices
where a matrix is nondegenerate if it has no constant or re-
peated columns.

Example: m=3, n=2. According to Table II, t5, =4.
Representatives of the four classes are as follows:

0 0] |0O0][0OO]f0 O
00100 1 0110 0Of.
0 0J LO 1 01 11

But there is only one class which is nondegenerate, namely,

00
10
01

Although a number of partial results have been obtained, we
have not succeeded in calculating the number of nondegen-
erate cases for arbitrary m and n.

Although our Theorems 2, 3, and 4 give exact results, they
are complicated to compute. It would be desirable to have
easily computed approximations. We do know that

mn
sm">m!n!
and
2(m—1)n
fmn mint

Unfortunately, these bounds are not the asymptotic limits.
It would be desirable to have simply computable asymptotic
estimates for s,,,,, and ¢, ,.
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An Improved Algorithm for the
Generation of Nonparametric Curves

BERNARD W. JORDAN, JR., MEMBER, EEE, WILLIAM J. LENNON, ASSOCIATE MEMBER, IEEE, AND
BARRY D. HOLM,MEMEBER, IEEE

Abstract—Generation of curves using incremental steps along fixed
coordinate axes is important in such diverse areas as computer displays,
digital plotters, and numerical control. Direct implementation of a non-
parametric representation of a curve, f(x, y) = 0, has been shown to be
attractive for digital generation. The algorithm in this paper is devel-
oped directly from the nonparametric representation of the curve,
allows steps to be taken to any point adjacent to the current one, and
uses decision variables closely related to an error criterion. Conse-
quently, the algorithm is more general and produces curves closer to the

‘actual curve than do previously reported algorithms.

Index Terms—Computer displays, curve generation, digital plotters,
incremental, nonparametric curves.

I. INTRODUCTION

ENERATION of curves using incremental steps along

fixed coordinate axes is important in such diverse areas
as computer graphics displays, digital plotters, and numerical
control. The classical approach has been to use digital differen-
tial analyzers to implement the basically analog technique of
introducing an independent parameter, time, and determine a
set of differential equations whose solution results in the de-
sired curve. Recently, there has been interest in nonparametric
approaches, which are more natural to digital systems. Erdahl
[1] developed an algorithm for straight lines, together with
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associated hardware, which placed a dot in every xy position
through which the continuous line passed. Bresenham [2]
presented an algorithm for straight lines that basically placed
data in those positions which are closest to the original curve.
Metzger [3] reiterated Bresenham’s algorithm and also pro-
duced algorithms for circles and parabolas. All of the above
techniques are satisfactory for the generation of approxima-
tions to straight lines, but are not general, and Metzger’s algo-
rithms are not efficient for other than straight lines. Daniels-
son [4] considered both the classical DDA approach and
proposed an algorithm using a nonparametric technique. He
pointed out that the nonparametric approach can produce
closed curves without degradation and proceeds along the curve
with less velocity variation. While Danielsson’s algorithm is
general and simple and does produce points close to the actual
curve, his basis for selecting the points is not related to any
error criteria. Furthermore, incremental steps are limited to
either a step in x or a step in y but not both. Consequently,
45° lines are broader and appear fuzzier than horizontal or
vertical lines. Finally, curves produced for symmetrical figures
(e.g., circles, parabolas) do not retain the symmetry of the
original figure. While this may not be important in many ap-
plications, in some areas such as numerical control and auto-
matic production of photographic masks it may be a drawback.

The algorithm proposed here retains the generality of Daniels-
son’s approach. However, the ability to step in any of the
eight possible directions is retained. Smoother and more well-
defined curves are therefore obtained. Furthermore, the vari-
ables used to determine each incremental step are related to an
error criteria. Consequently, the points generated are closer 10
the original curve. '



