[go: up one dir, main page]

login
A354972
Numbers k such that A354975(k) is prime.
3
2, 9, 15, 19, 21, 32, 63, 75, 77, 108, 115, 120, 147, 151, 229, 235, 243, 248, 252, 258, 279, 283, 285, 288, 290, 299, 303, 309, 314, 352, 360, 361, 362, 377, 382, 387, 393, 398, 413, 418, 430, 447, 457, 462, 465, 467, 468, 470, 475, 488, 510, 518, 551, 560, 569, 604, 625, 643, 679, 732, 735, 740
OFFSET
1,1
COMMENTS
Numbers k such that Sum_{i=1..k} (prime(i+k) mod prime(i)) is prime.
LINKS
EXAMPLE
a(1) = 2 is a term because A354975(2) = (5 mod 2) + (7 mod 3) = 2 is prime.
MAPLE
filter:= proc(n) local k;
isprime(add(ithprime(n+k) mod ithprime(k), k=1..n))
end proc:
select(filter, [$1..1000]);
PROG
(PARI) isok(k) = isprime(sum(i=1, k, prime(i+k) % prime(i))); \\ Michel Marcus, Jun 19 2022
(Python)
from itertools import count, islice
from sympy import prime, isprime
def A354972_gen(): # generator of terms
for n in count(1):
if isprime(sum(prime(i+n) % prime(i) for i in range(1, n+1))):
yield n
A354972_list = list(islice(A354972_gen(), 10)) # Chai Wah Wu, Jun 20 2022
CROSSREFS
Sequence in context: A353317 A083288 A272044 * A304803 A184531 A063105
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jun 15 2022
STATUS
approved