OFFSET
1,1
COMMENTS
A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms and their prime indices begin:
2: (1)
9: (2,2)
15: (3,2)
18: (2,2,1)
21: (4,2)
30: (3,2,1)
33: (5,2)
36: (2,2,1,1)
39: (6,2)
42: (4,2,1)
51: (7,2)
57: (8,2)
60: (3,2,1,1)
66: (5,2,1)
69: (9,2)
72: (2,2,1,1,1)
78: (6,2,1)
84: (4,2,1,1)
For example, the partition (2,2,1,1) with Heinz number 36 has a fixed point at the second position, as does its conjugate (4,2), so 36 is in the sequence.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Select[Range[100], pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]>0&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 15 2022
STATUS
approved