[go: up one dir, main page]

login
A349391
Dirichlet convolution of A126760 with omega.
6
0, 1, 1, 2, 1, 4, 1, 3, 2, 5, 1, 7, 1, 6, 5, 4, 1, 7, 1, 9, 6, 7, 1, 10, 3, 8, 3, 11, 1, 16, 1, 5, 7, 9, 7, 12, 1, 10, 8, 13, 1, 20, 1, 13, 9, 11, 1, 13, 4, 18, 9, 15, 1, 10, 8, 16, 10, 13, 1, 27, 1, 14, 11, 6, 9, 24, 1, 17, 11, 32, 1, 17, 1, 16, 18, 19, 9, 28, 1, 17, 4, 17, 1, 34, 10, 18, 13, 19, 1, 27, 10, 21
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n} A126760(n/d) * A001221(d).
MATHEMATICA
f[n_] := 2 * Floor[(m = n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3])/6] + Mod[m, 3]; a[n_] := DivisorSum[n, f[#] * PrimeNu[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
PROG
(PARI)
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
A349391(n) = sumdiv(n, d, A126760(n/d)*omega(d));
CROSSREFS
Cf. A347233, A347234, A349390, A349392, A349393, A349395 for other Dirichlet convolutions of A126760. And also A347957.
Sequence in context: A263653 A330328 A269427 * A077808 A021471 A088372
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 15 2021
STATUS
approved