[go: up one dir, main page]

login
A349389
a(n) = A349387(n) + A349388(n).
3
2, 0, 0, 1, 0, 4, 0, 5, 4, 4, 0, 10, 0, 8, 8, 19, 0, 16, 0, 10, 16, 4, 0, 26, 4, 8, 32, 20, 0, 0, 0, 65, 8, 4, 16, 42, 0, 8, 16, 26, 0, 0, 0, 10, 32, 12, 0, 70, 16, 24, 8, 20, 0, 68, 8, 52, 16, 4, 0, 4, 0, 12, 64, 211, 16, 0, 0, 10, 24, 0, 0, 114, 0, 8, 48, 20, 16, 0, 0, 70, 196, 4, 0, 8, 8, 8, 8, 26, 0, 8, 32, 30
OFFSET
1,1
FORMULA
a(1) = 2, and for n >1, a(n) = -Sum_{d|n, 1<d<n} A349387(d) * A349388(n/d). [As the sequences are Dirichlet inverses of each other]
MATHEMATICA
f1[p_, e_] := (q = NextPrime[p])^e - p * q^(e-1); f2[p_, e_] := p^e - NextPrime[p] * p^(e-1); a[1] = 2; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) + Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 18 2021 *)
PROG
(PARI) A349389(n) = (A349387(n) + A349388(n)); \\ Needs also code from A349387 and A349388.
CROSSREFS
Cf. also A349383.
Sequence in context: A349349 A349443 A319340 * A354876 A323408 A347099
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 17 2021
STATUS
approved