[go: up one dir, main page]

login
A340057
Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the block m consists of the divisors of m multiplied by A000041(n-m), with 1 <= m <= n.
5
1, 1, 1, 2, 2, 1, 2, 1, 3, 3, 2, 4, 1, 3, 1, 2, 4, 5, 3, 6, 2, 6, 1, 2, 4, 1, 5, 7, 5, 10, 3, 9, 2, 4, 8, 1, 5, 1, 2, 3, 6, 11, 7, 14, 5, 15, 3, 6, 12, 2, 10, 1, 2, 3, 6, 1, 7, 15, 11, 22, 7, 21, 5, 10, 20, 3, 15, 2, 4, 6, 12, 1, 7, 1, 2, 4, 8, 22, 15, 30, 11, 33, 7, 14, 28, 5, 25
OFFSET
1,4
COMMENTS
This triangle is a condensed version of the more irregular triangle A340035.
For further information about the correspondence divisor/part see A338156.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11528 (rows 1..75 of the triangle, flattened)
EXAMPLE
Triangle begins:
[1];
[1], [1, 2];
[2], [1, 2], [1, 3];
[3], [2, 4], [1, 3], [1, 2, 4];
[5], [3, 6], [2, 6], [1, 2, 4], [1, 5];
[7], [5, 10], [3, 9], [2, 4, 8], [1, 5], [1, 2, 3, 6];
[11], [7, 14], [5, 15], [3, 6, 12], [2, 10], [1, 2, 3, 6], [1, 7];
...
Row sums gives A066186.
Written as a tetrahedrons the first five slices are:
--
1;
--
1,
1, 2;
-----
2,
1, 2,
1, 3;
-----
3,
2, 4,
1, 3,
1, 2, 4;
--------
5,
3, 6,
2, 6,
1, 2, 4,
1, 5;
--------
Row sums give A221529.
The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
.
|---|---------|-----|-------|---------|-----------|-------------|
| n | | 1 | 2 | 3 | 4 | 5 |
|---|---------|-----|-------|---------|-----------|-------------|
| | - | | | | | 5 |
| C | - | | | | 3 | 3 6 |
| O | - | | | 2 | 2 4 | 2 6 |
| N | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| D | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| | A027750 | | | | | 1 |
| D | A027750 | | | | | 1 |
| I |---------|-----|-------|---------|-----------|-------------|
| V | A027750 | | | | 1 | 1 2 |
| I | A027750 | | | | 1 | 1 2 |
| S | A027750 | | | | 1 | 1 2 |
| O |---------|-----|-------|---------|-----------|-------------|
| R | A027750 | | | 1 | 1 2 | 1 3 |
| S | A027750 | | | 1 | 1 2 | 1 3 |
| |---------|-----|-------|---------|-----------|-------------|
| | A027750 | | 1 | 1 2 | 1 3 | 1 2 4 |
| |---------|-----|-------|---------|-----------|-------------|
| | A027750 | 1 | 1 2 | 1 3 | 1 2 4 | 1 5 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| | A138785 | 1 | 2 2 | 4 2 3 | 7 6 3 4 | 12 8 6 4 5 |
| | | = | = = | = = = | = = = = | = = = = = |
| L | A002260 | 1 | 1 2 | 1 2 3 | 1 2 3 4 | 1 2 3 4 5 |
| I | | * | * * | * * * | * * * * | * * * * * |
| N | A066633 | 1 | 2 1 | 4 1 1 | 7 3 1 1 | 12 4 2 1 1 |
| K | | | | |\| | |\|\| | |\|\|\| | |\|\|\|\| |
| | A181187 | 1 | 3 1 | 6 2 1 | 12 5 2 1 | 20 8 4 2 1 |
|---|---------|-----|-------|---------|-----------|-------------|
.
|---|---------|-----|-------|---------|-----------|-------------|
| P | | 1 | 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 1 1 |
| A | | | 2 | 2 1 | 2 1 1 | 2 1 1 1 |
| R | | | | 3 | 3 1 | 3 1 1 |
| T | | | | | 2 2 | 2 2 1 |
| I | | | | | 4 | 4 1 |
| T | | | | | | 3 2 |
| I | | | | | | 5 |
| O | | | | | | |
| N | | | | | | |
| S | | | | | | |
|---|---------|-----|-------|---------|-----------|-------------|
.
The upper zone is a condensed version of the "divisors" zone.
The above table is the table of A340056 upside down.
MATHEMATICA
A340057row[n_]:=Flatten[Table[Divisors[m]PartitionsP[n-m], {m, n}]]; Array[A340057row, 10] (* Paolo Xausa, Sep 02 2023 *)
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Dec 27 2020
STATUS
approved