[go: up one dir, main page]

login
A340058
Composite numbers c such that phi(c)/phi(mind(c)) mod phi(c)/phi(maxd(c)) = 0, where phi is the Euler function, mind(c) is the smallest nontrivial divisor of c, maxd(c) is the largest nontrivial divisor of c.
3
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99
OFFSET
1,1
COMMENTS
This equivalence criterion splits a set of composite numbers into two classes and can be used to count certain combinatorial objects.
PROG
(MATLAB)
n=100; % gives all terms of the sequence not exceeding n
A=[];
for i=1:n
dn=divisors(i);
if size(dn, 2)>2 && mod(totient(i)/totient(dn(2)), totient(i)/totient(dn(end-1)))==0
A=[A i];
end
end
function [res] = totient(n)
res=0;
for i=1:n
if gcd(i, n)==1
res=res+1;
end
end
end
(PARI) isok(c) = if ((c>1) && !isprime(c), my(t=eulerphi(c), d=divisors(c)); ((t/eulerphi(d[2])) % (t/eulerphi(d[#d-1]))) == 0); \\ Michel Marcus, Dec 28 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Maxim Karimov, Dec 27 2020
STATUS
approved