[go: up one dir, main page]

login
A339797
Number of (undirected) Hamiltonian paths in the graph C_3 X C_n.
5
756, 4128, 18240, 73368, 277536, 1001760, 3512160, 12009480, 40390944, 133893936, 439304736, 1428450072, 4613176800, 14809528896, 47315578848, 150534443304, 477237381024, 1508232832080, 4753573999776, 14945425070136, 46886868887136, 146802927436128, 458818252975200
OFFSET
3,1
LINKS
Eric Weisstein's World of Mathematics, Hamiltonian Path
Eric Weisstein's World of Mathematics, Torus Grid Graph
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_CnXCk(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
grids.append((i + (n - 1) * k, i))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
grids.append((i + k - 1, i))
return grids
def A(start, goal, n, k):
universe = make_CnXCk(n, k)
GraphSet.set_universe(universe)
paths = GraphSet.paths(start, goal, is_hamilton=True)
return paths.len()
def B(n, k):
m = k * n
s = 0
for i in range(1, m):
for j in range(i + 1, m + 1):
s += A(i, j, n, k)
return s
def A339797(n):
return B(n, 3)
print([A339797(n) for n in range(3, 10)])
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 17 2020
STATUS
approved