OFFSET
1,2
COMMENTS
When grouped by negative and positive packs = - (1+1/2+1/3) + (1/4+1/5+1/6+1/7+1/8) - (1/9+...+1/15) + (1/16+...+1/24) +...+ (-1)^k (1/k^2 +...+ 1/((k+1)^2-1)) + ...
Sum_{m>=1} (-1)^floor(sqrt(m)) / m^q is convergent iff q > 1/2.
REFERENCES
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.3.35, p. 287.
E. Ramis , C. Deschamps, J. Odoux, Analyse 2, Exercices avec solutions, Classes Préparatoires aux Grandes Ecoles Scientifiques, Masson, Paris, 1985, Exercice 1. 1.14, pp. 12-13.
LINKS
Wikipedia, Digamma function.
FORMULA
Equals Sum_{m>=1} (-1)^floor(sqrt(m)) / m.
Equals Sum_{m>=1} (-1)^m * Sum_{k=m^2..(m+1)^2-1} 1/k.
Equals Sum_{m>=1} (-1)^m * (digamma((m+1)^2) - digamma(m^2)).
EXAMPLE
-1.2940812218830910763038217183567312505011225953992043022765923395275517127938...
MAPLE
evalf(Sum((-1)^n*(Psi(n^2 + 2*n + 1) - Psi(n^2)), n = 1 .. infinity), 120); # Vaclav Kotesovec, Dec 18 2020
PROG
(PARI) sumalt(k=1, (-1)^k * (psi(1 + 2*k + k^2) - psi(k^2))) \\ Vaclav Kotesovec, Dec 18 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Dec 17 2020
EXTENSIONS
More terms from Vaclav Kotesovec, Dec 18 2020
STATUS
approved