[go: up one dir, main page]

login
A335880
Lexicographically earliest infinite sequence such that a(i) = a(j) => A329697(i) = A329697(j) and A331410(i) = A331410(j) for all i, j >= 1.
11
1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 5, 2, 5, 4, 6, 1, 7, 5, 8, 3, 9, 5, 9, 2, 10, 5, 8, 4, 11, 6, 12, 1, 8, 7, 8, 5, 11, 8, 8, 3, 6, 9, 13, 5, 11, 9, 14, 2, 14, 10, 10, 5, 11, 8, 11, 4, 15, 11, 15, 6, 9, 12, 13, 1, 11, 8, 15, 7, 13, 8, 13, 5, 16, 11, 16, 8, 13, 8, 13, 3, 15, 6, 8, 9, 17, 13, 18, 5, 16, 11, 13, 9, 14, 14, 18, 2, 6, 14, 15, 10, 16, 10, 8, 5, 15
OFFSET
1,3
COMMENTS
Restricted growth sequence transform of the ordered pair [A329697(n), A331410(n)].
For all i, j:
A324400(i) = A324400(j) => a(i) = a(j),
a(i) = a(j) => A334861(i) = A334861(j),
a(i) = a(j) => A335875(i) = A335875(j),
a(i) = a(j) => A335877(i) = A335877(j),
a(i) = a(j) => A335881(i) = A335881(j).
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
Aux335880(n) = [A329697(n), A331410(n)];
v335880 = rgs_transform(vector(up_to, n, Aux335880(n)));
A335880(n) = v335880[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2020
STATUS
approved