OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
9: {2,2}
25: {3,3}
49: {4,4}
77: {4,5}
121: {5,5}
125: {3,3,3}
169: {6,6}
221: {6,7}
245: {3,4,4}
289: {7,7}
323: {7,8}
343: {4,4,4}
361: {8,8}
375: {2,3,3,3}
437: {8,9}
529: {9,9}
841: {10,10}
899: {10,11}
961: {11,11}
For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
MATHEMATICA
Select[Range[1000], !PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#], {p_, k_}:>k/PrimePi[p]!]]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 17 2019
STATUS
approved