[go: up one dir, main page]

login
A064986
Number of partitions of n into factorial parts (0! not allowed).
22
1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 36, 36, 42, 42, 48, 48, 56, 56, 64, 64, 72, 72, 82, 82, 92, 92, 102, 102, 114, 114, 126, 126, 138, 138, 153, 153, 168, 168, 183, 183, 201, 201, 219, 219, 237, 237, 258, 258, 279, 279
OFFSET
0,3
COMMENTS
a(2*n+1) = a(2*n) = A117930(n). [Reinhard Zumkeller, Dec 04 2011]
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..250 from Reinhard Zumkeller)
Youkow Homma, Jun Hwan Ryu and Benjamin Tong, Sequence non-squashing partitions, Slides from a talk, Jul 24 2014.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
FORMULA
G.f.: 1/Product_{i>=1} (1-x^(i!)).
G.f.: 1 + Sum_{n>0} x^(n!) / Product_{k=1..n} (1 - x^(k!)). - Seiichi Manyama, Oct 12 2019
G.f.: 1 + x/(1-x) + x^2/((1-x)*(1-x^2)) + x^6/((1-x)*(1-x^2)*(1-x^6)) + ... . - Seiichi Manyama, Oct 12 2019
EXAMPLE
a(3) = 2 because we can write 3 = 2!+1! = 1!+1!+1!.
a(10) = 9 because 10 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 = 1 + 1 + 1 + 1 + 2 + 2 + 2 = 1 + 1 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 = 1 + 1 + 1 + 1 + 6 = 1 + 1 + 2 + 6 = 2 + 2 + 6.
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i!>n, 0, b[n-i!, i]]];
c[n_] := Module[{i}, For[i = 1, i!<2n, i++]; b[2n, i]];
a[n_] := If[OddQ[n], c[(n-1)/2], c[n/2]];
a /@ Range[0, 100] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz in A117930 *)
Table[Length@IntegerPartitions[n, All, Factorial[Range[6]]], {n, 0, 63}] (* Robert Price, Jun 04 2020 *)
PROG
(Haskell)
a064986 = p (tail a000142_list) where
p _ 0 = 1
p fs'@(f:fs) m | m < f = 0
| otherwise = p fs' (m - f) + p fs m
-- Reinhard Zumkeller, Dec 04 2011
(PARI) N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/prod(k=1, m-1, 1-x^k!)) \\ Seiichi Manyama, Oct 13 2019
(PARI) N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1+sum(i=1, m-1, x^i!/prod(j=1, i, 1-x^j!))) \\ Seiichi Manyama, Oct 13 2019
CROSSREFS
Bisection gives A090632.
Sequence in context: A309685 A309683 A283529 * A349675 A029019 A040039
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Oct 30 2001
EXTENSIONS
More terms from Vladeta Jovovic and Don Reble, Nov 02 2001
STATUS
approved