[go: up one dir, main page]

login
A349675
a(n) is the number of attainable partitions of n.
0
1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 13, 13, 17, 17, 21, 21, 27, 27, 34, 34, 41, 41, 51, 51, 62, 62, 73, 73, 88, 88, 105, 105, 122, 122, 144, 144, 168, 168, 193, 193, 225, 225, 260, 260, 296, 296, 340, 340, 388, 388, 438, 438, 498, 498, 564, 564, 632, 632, 713, 713
OFFSET
0,3
COMMENTS
An attainable partition p of n is a partition such that, when written so that p_1 >= p_2 >= ... >= p_r, we have Sum_{i=1..r} (3-2*i)*p_i >= 0.
LINKS
Kathleen Petersen and James Sellers, Partitions Associated to Class Groups of Imaginary Quadratic Number Fields, arXiv:2111.12031 [math.NT], 2021.
FORMULA
G.f.: (1/(1-x))*Product_{i>=1} 1/(1-x^(i*(i+1)). See Theorem 1.1 p. 1.
MATHEMATICA
nterms=50; Table[Total[Map[If[Sum[(3-2i)#[[i]], {i, Length[#]}]>=0, 1, 0]&, IntegerPartitions[n]]], {n, 0, nterms-1}] (* Paolo Xausa, Nov 24 2021 *)
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, p = vecsort(p, , 4); if (sum(i=1, #p, (3-2*i)*p[i]) >= 0, nb++); ); nb;
CROSSREFS
Cf. A000041, A302835 (bisection).
Sequence in context: A309683 A283529 A064986 * A029019 A040039 A008667
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 24 2021
STATUS
approved