[go: up one dir, main page]

login
A322080
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{p|n, p prime} p^k.
2
0, 0, 1, 0, 2, 1, 0, 4, 3, 1, 0, 8, 9, 2, 1, 0, 16, 27, 4, 5, 2, 0, 32, 81, 8, 25, 5, 1, 0, 64, 243, 16, 125, 13, 7, 1, 0, 128, 729, 32, 625, 35, 49, 2, 1, 0, 256, 2187, 64, 3125, 97, 343, 4, 3, 2, 0, 512, 6561, 128, 15625, 275, 2401, 8, 9, 7, 1, 0, 1024, 19683, 256, 78125, 793, 16807, 16, 27, 29, 11, 2
OFFSET
1,5
FORMULA
G.f. of column k: Sum_{j>=1} prime(j)^k*x^prime(j)/(1 - x^prime(j)).
EXAMPLE
Square array begins:
0, 0, 0, 0, 0, 0, ...
1, 2, 4, 8, 16, 32, ...
1, 3, 9, 27, 81, 243, ...
1, 2, 4, 8, 16, 32, ...
1, 5, 25, 125, 625, 3125, ...
2, 5, 13, 35, 97, 275, ...
MATHEMATICA
Table[Function[k, Sum[Boole[PrimeQ[d]] d^k, {d, Divisors[n]}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[Prime[j]^k x^Prime[j]/(1 - x^Prime[j]), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
PROG
(PARI) T(n, k)={vecsum([p^k | p<-factor(n)[, 1]])}
for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018
CROSSREFS
Columns k=0..4 give A001221, A008472, A005063, A005064, A005065.
Cf. A109974, A200768 (diagonal), A285425, A286880, A321258.
Sequence in context: A255528 A201701 A131667 * A361958 A334122 A086802
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Nov 26 2018
STATUS
approved