[go: up one dir, main page]

login
A286880
Square array A(n,k), n>=0, k>=1, read by antidiagonals, where row n is the sum of n-th powers of unitary divisors of k (divisors d such that gcd(d, k/d) = 1).
8
1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 5, 10, 9, 1, 4, 6, 17, 28, 17, 1, 2, 12, 26, 65, 82, 33, 1, 2, 8, 50, 126, 257, 244, 65, 1, 2, 9, 50, 252, 626, 1025, 730, 129, 1, 4, 10, 65, 344, 1394, 3126, 4097, 2188, 257, 1, 2, 18, 82, 513, 2402, 8052, 15626, 16385, 6562, 513, 1, 4, 12, 130, 730, 4097, 16808, 47450, 78126, 65537, 19684, 1025, 1
OFFSET
0,2
COMMENTS
For row r > 0, Sum_{k=1..n} A(r,k) ~ zeta(r+1) * n^(r+1) / ((r+1) * zeta(r+2)). - Vaclav Kotesovec, May 20 2021
LINKS
Eric Weisstein's World of Mathematics, Unitary Divisor
Eric Weisstein's World of Mathematics, Unitary Divisor Function
FORMULA
Dirichlet g.f. of row n: zeta(s)*zeta(s-n)/zeta(2*s-n).
EXAMPLE
Square array begins:
1, 2, 2, 2, 2, 4, ...
1, 3, 4, 5, 6, 12, ...
1, 5, 10, 17, 26, 50, ...
1, 9, 28, 65, 126, 252, ...
1, 17, 82, 257, 626, 1394, ...
1, 33, 244, 1025, 3126, 8052, ...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Aug 02 2017
STATUS
approved