[go: up one dir, main page]

login
A005063
Sum of squares of primes dividing n.
35
0, 4, 9, 4, 25, 13, 49, 4, 9, 29, 121, 13, 169, 53, 34, 4, 289, 13, 361, 29, 58, 125, 529, 13, 25, 173, 9, 53, 841, 38, 961, 4, 130, 293, 74, 13, 1369, 365, 178, 29, 1681, 62, 1849, 125, 34, 533, 2209, 13, 49, 29, 298, 173, 2809, 13, 146, 53, 370, 845, 3481, 38, 3721
OFFSET
1,2
COMMENTS
The set of these terms apart from 0 is A048261. - Bernard Schott, Feb 10 2022
Inverse Möbius transform of n^2 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024
LINKS
FORMULA
Additive with a(p^e) = p^2.
G.f.: Sum_{k>=1} prime(k)^2*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Dec 24 2016
From Antti Karttunen, Jul 11 2017: (Start)
a(n) = A005066(n) + 4*A059841(n).
a(n) = A005079(n) + A005083(n) + 4*A059841(n).
a(n) = A005071(n) + A005075(n) + 9*A079978(n).
(End)
Dirichlet g.f.: primezeta(s-2)*zeta(s). - Benedict W. J. Irwin, Jul 11 2018
a(n) = Sum_{p|n, p prime} p^2. - Wesley Ivan Hurt, Feb 04 2022
a(n) = Sum_{d|n} d^2 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
MAPLE
A005063 := proc(n)
add(d^2, d= numtheory[factorset](n)) ;
end proc;
seq(A005063(n), n=1..40) ; # R. J. Mathar, Nov 08 2011
MATHEMATICA
a[n_] := Total[FactorInteger[n][[All, 1]]^2]; a[1]=0; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 20 2017 *)
Array[DivisorSum[#, #^2 &, PrimeQ] &, 61] (* Michael De Vlieger, Jul 11 2017 *)
PROG
(PARI) a(n)=local(fm, t); fm=factor(n); t=0; for(k=1, matsize(fm)[1], t+=fm[k, 1]^2); t \\ Franklin T. Adams-Watters, May 03 2009
(PARI) a(n) = vecsum(apply(x->x^2, factor(n)[, 1])); \\ Michel Marcus, Sep 19 2020
(Scheme) (define (A005063 n) (if (= 1 n) 0 (+ (A000290 (A020639 n)) (A005063 (A028234 n))))) ;; Antti Karttunen, Jul 10 2017
(Python)
from sympy import primefactors
def a(n): return sum(p**2 for p in primefactors(n))
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
CROSSREFS
Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), this sequence (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), this sequence (k=8), A351197 (k=9), A351198 (k=10).
Cf. A010051.
Sequence in context: A210966 A300516 A178147 * A235323 A345304 A078615
KEYWORD
nonn
EXTENSIONS
More terms from Franklin T. Adams-Watters, May 03 2009
STATUS
approved