[go: up one dir, main page]

login
A305807
Dirichlet inverse of A032742 (the largest proper divisor of n).
4
1, -1, -1, -1, -1, -1, -1, -1, -2, -3, -1, 1, -1, -5, -3, -1, -1, 0, -1, 1, -5, -9, -1, 3, -4, -11, -4, 1, -1, 5, -1, -1, -9, -15, -5, 6, -1, -17, -11, 5, -1, 7, -1, 1, -2, -21, -1, 5, -6, -8, -15, 1, -1, 4, -9, 7, -17, -27, -1, 19, -1, -29, -4, -1, -11, 11, -1, 1, -21, -3, -1, 8, -1, -35, -8, 1, -9, 13, -1, 9, -8, -39, -1, 29, -15, -41, -27, 11, -1
OFFSET
1,9
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = -Sum_{d|n, d<n} A032742(n/d)*a(d).
MATHEMATICA
b[n_] := If[n == 1, 1, Divisors[n][[-2]]];
a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
Array[a, 100] (* Jean-François Alcover, Feb 17 2020 *)
PROG
(PARI)
A032742(n) = if(1==n, n, n/vecmin(factor(n)[, 1]));
A305807(n) = if(1==n, 1, -sumdiv(n, d, if(d<n, A032742(n/d)*A305807(d), 0)));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Jun 13 2018
STATUS
approved