[go: up one dir, main page]

login
A304449
Numbers that are either squarefree or a perfect power.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89
OFFSET
1,2
COMMENTS
First differs from A072774 at a(105) = 144, A072774(105) = 145.
Apparently the 1 and the members of A062770. - R. J. Mathar, May 22 2018
FORMULA
Union of A005117 and A001597. Complement of A303946.
MATHEMATICA
Select[Range[150], SquareFreeQ[#]||GCD@@FactorInteger[#][[All, 2]]>1&]
PROG
(PARI) isok(n) = issquarefree(n) || ispower(n); \\ Michel Marcus, May 13 2018
(Python)
from math import isqrt
from sympy import mobius, integer_nthroot
def A304449(n):
def f(x): return int(n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))+sum(mobius(k)*(integer_nthroot(x, k)[0]-1) for k in range(2, x.bit_length())))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 19 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 12 2018
STATUS
approved