[go: up one dir, main page]

login
A293233
a(1) = 1; and for n > 1, a(n) = mu(n) * a(floor(n/2)), where mu is the Moebius function A008683.
12
1, -1, -1, 0, 1, -1, 1, 0, 0, 1, -1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
See comments and illustration in A293230.
LINKS
MATHEMATICA
Fold[Append[#1, MoebiusMu[#2] #1[[Floor[#2/2]]]] &, {1}, Range[2, 105]] (* Michael De Vlieger, Oct 10 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A293233 n) (if (= 1 n) 1 (* (A008683 n) (A293233 (/ (- n (A000035 n)) 2)))))
;; This version just demonstrates how a(n) can be computed from A292258(n):
(define (A293233 n) (let loop ((m 1) (n (A292258 n))) (if (= 1 n) m (loop (* m (A008683 (A025487 (+ 1 (A055396 n))))) (A032742 n)))))
CROSSREFS
Cf. A008683.
Cf. A293430 (gives the positions of nonzero terms), A293230 (number of nonzero terms in each range [2^n, (2^(n+1))-1]).
Cf. also A292258, A292259.
Sequence in context: A266974 A075437 A130047 * A302050 A008683 A008966
KEYWORD
sign
AUTHOR
STATUS
approved