OFFSET
0,8
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,2).
FORMULA
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + 2*a(n-7) for n >= 8.
G.f.: x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)). - Colin Barker, Aug 22 2017
a(n) = A049017(n-6) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^6/((1-x)^7 - x^7). - G. C. Greubel, Apr 11 2023
MATHEMATICA
PROG
(PARI) concat(vector(6), Vec(x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)) + O(x^50))) \\ Colin Barker, Aug 22 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0, 0, 0, 0, 0, 0] cat Coefficients(R!( x^6/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A290994_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x^6/((1-x)^7 - x^7) ).list()
A290994_list(60) # G. C. Greubel, Apr 11 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 22 2017
STATUS
approved